Skip to main content

Cryopreservation of Plant Germplasm: Introduction and Some Observations

  • Chapter
Cryopreservation of Plant Germplasm II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 50))

Abstract

It has been amply stated that preservation of germplasm is important not only for plant improvement and utilization for food, fiber, medicinal and forest crops, but also for conservation of rare and endangered species (Knutson and Stoner 1989; Falk and Holsinger 1991; Reaka-Kudla et al. 1997). As documented in contributed chapters in this volume and in comprehensive compendia, reasons for species or landrace loss are diverse but usually related to pressures from increasing human populations and the attendant habitat loss, land use changes and desire for productive crops. Whatever the root causes, the final effect is certainly the loss of genotypes. In efforts to stave off further loss, preservation systems have been devised to retain as much genetic diversity for the species as possible. Broadly classed, both in situ and ex situ preservation systems have been proposed and have been implemented in varying degrees for different species. In situ preservation allows for evolutionary forces to continue and can be argued to be important, for example, for disease-resistance development. However, in situ preservation still requires management and is not suitable for more domesticated lines. Preservation ex situ (within genebanks) is, therefore, used as a system around the world for many species, both commercially important and endangered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anthony P, Davey MR, Azhakanandam K, Power JB, Lowe KC (2000) Cryopreservation of plant germplasms: new approaches for enhanced postthaw recovery. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro, vol 2. Applications and limitations. Science Publishers, Enfield, New Hampshire

    Google Scholar 

  • Bajaj YPS (ed) (1995) Cryopreservation of plant germplasm I. Biotechnology in agriculture and forestry, vol 32. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Benson EE, Harding K, Smith H (1989) Variation in recovery of cryopreserved shoot-tips of Solanum tuberosum exposed to different pre-and post-freezing light regimes. Cryo-Letters 10: 323–344

    Google Scholar 

  • Benson EE, Lynch PT, Jones J (1995) The use of iron chelating desferrioxamine in rice cell cryopreservation: a novel approach for improving recovery. Plant Sci 110: 249–258

    Article  CAS  Google Scholar 

  • Benson EE (ed) (1999) Plant Conservation Biotechnology. Taylor and Francis, London

    Google Scholar 

  • Bischof JC (2000) Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu Rev Biomed Eng 2: 257–288

    Article  PubMed  CAS  Google Scholar 

  • Bouafia S, Jelti N, Lairy G, Blanc A, Bonnel E, Dereuddre J (1996) Cryopreservation of potato shoot tips by encapsulation-dehydration. Potato Res 39: 69–78

    Article  Google Scholar 

  • Chang Y, Reed BM (1999) Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation. Cryo-Letters 20: 371–376

    Google Scholar 

  • Chang Y, Reed BM (2000) Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation. Cryobiology 40: 311–322

    Article  PubMed  CAS  Google Scholar 

  • De Carlo A, Benelli C, Lambardi M (2000) Development of a shoot-tip vitrification protocol and comparison with encapsulation-based procedures for plum (Prunus domestica L.) cryopreservation. Cryo-Letters 21: 215–222

    PubMed  Google Scholar 

  • Dereuddre J, Scottez C, Arnaud Y, Duron M (1990) Resistance of alginate-coated axillary shoot tips of pear tree (Pyrus communis L. cv. Beurre Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen: effects of previous cold hardening. CR Acad Sci Paris 310: 317–323

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Richaud F, Beule T, Durand-Gassellin T, Duval Y (1993) Development of cryopreservation for oil palm somatic embryos using an improved process. Oleagineux 48: 273–278

    Google Scholar 

  • Dussert S, Chabrillange N, Vasquez N, Englemann F, Anthony F, Guyot A, Hamon S (2000) Beneficial effect of post-thawing osmoconditioning on the recovery of cryopreserved coffee (Coffea arabica L.) seeds. Cryo-Letters 21: 47–52

    PubMed  Google Scholar 

  • Engelmann F, Takagi H (eds) (2000) Cryopreservation of tropical plant germplasm: current research progress and application. Japan International Research Center for Agricultural Sciences, Tsukuba, Japan, 496 pp

    Google Scholar 

  • Fahy G (1995) The role of nucleation in cryopreservation. In: Lee RE, Warren GJ, Gusta LJ (eds) Biological ice nucleation and its applications. American Phytopathology Press, St. Paul, MN, pp 315–336

    Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426

    Article  PubMed  CAS  Google Scholar 

  • Fahy GM, Levy DI, Ali SE (1987) Some emerging principles underlying the physical properties, biological actions and utility of vitrification solutions. Cryobiology 24: 196–213

    Article  PubMed  CAS  Google Scholar 

  • Falk DA, Holsinger KE (eds) (1991) Genetics and conservation of rare plants. Oxford Univ Press, New York

    Google Scholar 

  • Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Syst 31: 107–138

    Article  Google Scholar 

  • Hanna WW, Towill LE (1995) Long-term pollen storage. Plant Breeding Rev 13:179–207 Harding K, Benson EE (2001) The use of microsatellite analysis in Solanum tuberosum L. in vitro plantlets derived from cryopreserved germplasm. Cryo-Letters 22: 199–208

    Google Scholar 

  • Helliot B, de Boucaud MT (1997) Effect of various parameters on the survival of cryopreserved Prunus Ferlenain in vitro plantlets shoot tips. Cryo-Letters 18: 133–142

    Google Scholar 

  • Hitmi A, Coudret A, Barthomeuf C, Sallanon H (1999) The role of sucrose in freezing tolerance in Chrysanthemum cinerariaefolium L. cell cultures. Cryo-Letters 20: 45–54

    CAS  Google Scholar 

  • Hoekstra FA (1995) Collecting pollen for genetic resources conservation. In: Guarino L, Rao VR, Reid R (eds) Collecting plant genetic diversity. Technical guidelines. CAB International, Wallingford, Oxon, UK, pp 527–550

    Google Scholar 

  • Jekkel Z, Gyulai G, Kiss J, Kiss E, Heszky LE (1998) Cryopreservation of horse-chestnut (Aesculus hippocastanum L.) somatic embryos using three different freezing methods. Plant Cell Tissue Organ Cult 52: 193–197

    Article  CAS  Google Scholar 

  • Kartha KK (ed) (1985) Cryopreservation of plant cells and organs. CRC Press, Boca Raton Keefe PD, Henshaw GG (1984) A note of the multiple role of artificial nucleation of the suspending medium during two-step cryopreservation procedures. Cryo-Letters 5: 71–78

    Google Scholar 

  • Knutson L, Stoner AK (eds) (1989) Biotic diversity and germplasm preservation, global imperatives, Kluwer, Dordrecht

    Google Scholar 

  • Kuriyama A, Watanabe K, Ueno S, Mitsuda H (1989) Inhibitory effect of ammonium ion on recovery of cryopreserved rice cells. Plant Sci 64: 231–235.

    Article  CAS  Google Scholar 

  • Macfarlane DR (1986) Devitrification in glass-forming aqueous solutions. Cryobiology 23: 230–244

    Article  CAS  Google Scholar 

  • Matsumoto T, Sakai A, Nako Y (1998a) A novel preculturing for enhancing the survival of in vitro-grown meristems of wasabi (Wasabia japonica) cooled to —196 °C by vitrification. CryoLetters 19: 27–36

    Google Scholar 

  • Matsumoto T, Takahashi C, Sakai A, Nako Y (1998b) Cryopreservation of in vitro-grown apical meristems of hybrid statice by three different procedures. Sci Hort 76: 105–114

    Article  Google Scholar 

  • Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. Cryo-Letters 16: 189–196

    Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol Cell Physiol 247: C125–142

    CAS  Google Scholar 

  • Mazur P (1966) Physical and chemical basis of injury in single-celled micro-organisms subjected to freezing and thawing. In: Meryman HT (ed) Cryobiology. Academic Press, New York, pp 213–315

    Google Scholar 

  • McGrath JJ (1997) Quantitative measurement of cell membrane transport: technology and applications. Cryobiology 34: 315–334

    Article  PubMed  CAS  Google Scholar 

  • Mehl P (1996) Crystallization and vitrification in aqueous glass-forming solutions. In: Steponkus PL (ed) Advances in low-temperature biology. JAI Press, Greenwich, CT, pp 185–255

    Chapter  Google Scholar 

  • Mercier S (1995) The role of a pollen bank in the tree genetic improvement program in Quebec (Canada). Grana 34: 367–370

    Article  Google Scholar 

  • Mix-Wagner G, Conner AJ, Cross RJ (2000) Survival and recovery of asparagus shoot tips after cryopreservation using the “droplet” method. N Z J Crop Hort Sci 28: 283–287

    Article  Google Scholar 

  • Mycock DJ, Wesley-Smith J, Berjak P (1995) Cryopreservation of somatic embryos of four species with and without cryoprotectant pretreatment. Ann Bot 75: 331–336

    Article  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Cult 28: 261–266

    Article  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91: 67–73

    Article  CAS  Google Scholar 

  • Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9: 13–37

    Article  Google Scholar 

  • Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato (Ipomoea batatas ( L.) Lam.) by vitrification. Plant Cell Rep 19: 733–737

    Google Scholar 

  • Plessis P, Leddet C, Collas A, Dereuddre J (1993) Cryopreservation of Vitis vinifera L. cv. Chardonnay shoot tips by encapsulation-dehydration: effects of pretreatment, cooling and postculture conditions. Cryo-Letters 14: 309–320

    Google Scholar 

  • Razdan MK, Cocking EC (eds) (2000) Conservation of plant genetic resources in vitro, vol 2. Applications and limitations. Science Publisher, Enfield, NH

    Google Scholar 

  • Reaka-Kudla ML, Wilson DE, Wilson EO (eds) (1997) Biodiversity II. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Reinhoud PJ, Schrijnemakers WM, van Iren F, Kijne JW (1995) Vitrification and a heat-shock improve cryopreservation of tobacco cell suspensions compared to two-step freezing. Plant Cell Tissue Organ Cult 42: 262–267

    Article  Google Scholar 

  • Ryynanen L (1996) Cold hardening and slow cooling: tools for successful cryopreservation and recovery of in vitro shoot tips of silver birch. Can J For Res 26: 2015–2022

    Article  Google Scholar 

  • Ryynanen L (1998) Effect of abscisic acid, cold hardening, and photoperiod on recovery of cryopreserved in vitro shoot tips of silver birch. Cryobiology 36: 32–39

    Article  PubMed  CAS  Google Scholar 

  • Ryynanen LA, Haggman HM (2001) Recovery of cryopreserved silver birch shoot tips is affected by the pre-freezing age of the cultures and ammonium substitution. Plant Cell Rep 20: 354–360

    Article  CAS  Google Scholar 

  • Sakai A, Matsumoto T, Hirai D, Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo-Letters 21: 53–62

    PubMed  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin Heidelberg New York, 321 pp

    Chapter  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellus cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–33

    Google Scholar 

  • Schafer-Menuhr A, Schumacher H-M, Mix-Wagner G (1997) Long-term storage of old potato varieties by cryopreservation of shoot tips in liquid nitrogen. Plant Genet Resour Newslett 111: 19–24

    Google Scholar 

  • Shibli RA, Al-Juboory KH (2000) Cryopreservation of `nabali’ olive (Olea europea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. Cryo-Letters 21: 357–366

    PubMed  Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 199–226

    Google Scholar 

  • Stanwood PC (1987) Survival of sesame seeds at the temperature (-196 °C) of liquid nitrogen. Crop Sci 27: 327–331

    Article  Google Scholar 

  • Steponkus PL, Langis R, Fujikawa S (1992) Cryopreservation of plant tissues by vitrification. In: Steponkus PL (ed) Advances in low-temperature biology. JAI Press, London, pp 1–61

    Google Scholar 

  • Stewart P, Taylor M, Mycock D (2001) The sequence of the preparative procedures affects the success of cryostorage of cassava somatic embryos. Cryo-Letters 22: 35–42

    PubMed  CAS  Google Scholar 

  • Takagi H (2000) Recent developments in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. Japan International Center for Agricultural Sciences, Tsukuba, Japan, pp 178–193

    Google Scholar 

  • Tannoury M, Ralambosoa J, Kaminski M, Dereuddre J (1991) Cryoconservation by vitrification of alginate-coated carnation (Dianthus caryophyllus L.) shoot tips of in vitro plants. CR Acad Sci Paris 313: 633–638

    Google Scholar 

  • Thammasiri K (1999) Cryopreservation of embryonic axes of jackfruit. Cryo-Letters 20: 21–28

    Google Scholar 

  • Touchell D, Walters C (2000) Recovery of embryos of Zizania palustris following exposure to liquid nitrogen. Cryo-Letters 21: 261–270

    PubMed  Google Scholar 

  • Towill LE (1985) Low temperature and freeze-/vacuum-drying preservation of pollen. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 171–198

    Google Scholar 

  • Towill LE (1990) Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep 9: 178–180

    Article  Google Scholar 

  • Uemura M, Steponkus PL (1999) Cold acclimation in plants: relationship between the lipid composition and the cryostability of the plasma membrane. J Plant Res 112: 245–254

    Article  Google Scholar 

  • Vertucci CW, Roos EE (1990) Theoretical basis of protocols for seed storage. Plant Physiol 94: 1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Vertucci CW, Roos EE (1993) Theoretical basis of protocols for seed storage II. The influence of temperature on optimal moisture levels. Seed Sci Res 3: 201–213

    Google Scholar 

  • Vertucci CW, Roos EE, Crane J (1994) Theoretical basis of protocols for seed storage III. Optimum moisture contents for pea seeds stored at different temperatures. Ann Bot 74: 531–540

    Article  Google Scholar 

  • Watanabe K (2000) Effect of postthaw treatments on viability of cryopreserved plant cells. In: Razdan MK, Cocking EC (eds) Conservation of plant genetic resources in vitro, vol. 2. Applications and limitations. Science Publishers Inc, Enfield, New Hampshire, pp 3–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Towill, L.E. (2002). Cryopreservation of Plant Germplasm: Introduction and Some Observations. In: Towill, L.E., Bajaj, Y.P.S. (eds) Cryopreservation of Plant Germplasm II. Biotechnology in Agriculture and Forestry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04674-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04674-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07502-5

  • Online ISBN: 978-3-662-04674-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics