Skip to main content

Low-Power Memory Circuits

  • Chapter
VLSI Memory Chip Design

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 5))

Abstract

The low-power RAM circuit [7.1–7.4] is a major area of interest in low-power LSI research. Successive advances in the low-power RAM circuit have been able to suppress chip-power consumption, which increases with increasing memory capacity, chip area, and speed. As a result, these advances — coupled with high-density memory-cell technology — have allowed chip power consumption to be maintained or lowered (Fig. 7.1), although the memory capacity of DRAM chips has increased rapidly by over six orders (1 Kb to 4 Gb) over the past 30 years. Consequently, the low-power RAM circuit has realized low-cost, high-reliability chips because it allows plastic packaging, a low operating current, and a low junction temperature. In addition, it has managed the ever-increasing memory-subsystem power caused by the increasingly high throughput requirements of various processing systems such as personal computers. Moreover, it forms not only the basis of other LSI memory chips, such as Flash memory and ROM, but also the basis of on-chip memory subsystems, such as embedded DRAMs (merged DRAM and logic) [7.3] and SRAM caches, both of which have become increasingly important in modern memory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Itoh, K. Sasaki, Y. Nakagome, IEEE Proc. 83(4), 524 (1995).

    Article  Google Scholar 

  2. K. Itoh, “Low power memory design”, in Low power design methodologies, J.M. Rabaey, M. Pedram, Eds., Kluwer, Norwell, MA, pp. 201–251, Oct. 1995.

    Chapter  Google Scholar 

  3. K. Itoh et al, IEEE J. Solid-State Circuits 32(5), 624 (1997).

    Article  Google Scholar 

  4. K. Itoh, IEEE J. Solid-State Circuits 25, 778 (1990).

    Article  Google Scholar 

  5. Y. Nakagome et al., IEEE J. Solid-State Circuits 26(3), 465 (1991).

    Article  Google Scholar 

  6. K. Satoh et al., “A 4 Mb pseudo-SRAM operating at (2.6±1) V with 3 μA data-retention current”, ISSCC Dig. Tech. Papers, pp. 268–269, Feb.1991.

    Google Scholar 

  7. K. Ishibashi, IEICE Trans. Electron. E79-C(6), 724 (1996).

    Google Scholar 

  8. M. Matsumiya et al., “A 15 ns 16 Mb CMOS SRAM with reduced voltage amplitude data bus”, ISSCC Dig. Tech. Papers, pp. 214–215, Feb. 1992.

    Google Scholar 

  9. Hitachi Memory Catalogs, Aug. 1993 and Aug. 1994.

    Google Scholar 

  10. D. Takashima et al., “Noise suppression scheme for giga-scale DRAM with hundreds of I/Os”, Symp. VLSI Circuits, Dig. Tech. Papers, pp. 196–197, June 1996.

    Google Scholar 

  11. M. Taguchi, IEICE Trans. Electron. E77-C(12), 1944 (1994).

    Google Scholar 

  12. H.W. Johnson, M. Graham, High-speed digital design (Prentice-Hall 1993).

    Google Scholar 

  13. K. Kimura et al., IEEE J. Solid-State Circuits SC-21, 381 (1986).

    Article  Google Scholar 

  14. K. Itoh et al., “An experimental 1 Mb DRAM with on-chip voltage limiter”, ISSCC Dig. Tech. Papers, pp. 106–107, Feb. 1984.

    Google Scholar 

  15. T. Sugibayashi et al., “A 30 ns 256 Mb DRAM with multi-divided array structure”, ISSCC Dig.Tech. Papers, pp. 50–51, Feb. 1993.

    Google Scholar 

  16. H. Tanaka et al., IEICE Trans. Electron. E75-C(11), 1333 (1999).

    Google Scholar 

  17. M. Horiguchi et al., IEEE J. Solid-State Circuits, 26(11), 1544 (1991).

    Article  Google Scholar 

  18. M. Yoshimoto, et al, “A 64 Kb CMOS RAM with divided word line structure”, ISSCC Dig. Tech. Papers, pp. 58–59, Feb. 1983.

    Google Scholar 

  19. O. Minato, et al., “A 20 ns 64 K CMOS RAM”, ISSCC Dig. Tech. Papers, pp. 222–223, Feb. 1984.

    Google Scholar 

  20. K. Sasaki, et al., IEEE J. Solid-State Circuits 24, 1219 (1989).

    Article  Google Scholar 

  21. E. Seevinck, “A current sense amplifier for fast CMOS SRAMs”, Symp. VLSI Circuit, Dig. Tech. Papers, pp. 71–72, June 1990.

    Google Scholar 

  22. K. Sasaki, et al., “A 7 Mb 140 mW CMOS SRAM with current sense amplifier”, ISSCC Dig. Tech. Papers, pp. 208–209, Feb. 1992.

    Google Scholar 

  23. K. Seno et. al, “A 9 ns 16 Mb CMOS SRAM with offset reduced current sense amplifier”, ISSCC Dig. Tech. Papers, pp. 248–249, Feb. 1993.

    Google Scholar 

  24. K. Ishibashi et al., “A 6 ns 4 Mb CMOS SRAM with offset-voltage-insensitive current sense amplifiers”, Symp. VLSI Circuits, Dig. Tech. Papers, pp. 107–108, June 1994.

    Google Scholar 

  25. N. Kushiyama et al., “A 295 MHz CMOS 1 M (×256) embedded SRAM using bidirectional read/write shared sense amps and self-timed pulsed word-line drivers”, ISSCC Dig. Tech. Papers, pp. 304–305, Feb. 1995.

    Google Scholar 

  26. K. Osada et al., “A 2 ns access, 285 MHz, two-port cache macro using double global bit-line pairs”, ISSCC Dig. Tech. Papers, pp. 402–403, Feb. 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Itoh, K. (2001). Low-Power Memory Circuits. In: VLSI Memory Chip Design. Springer Series in Advanced Microelectronics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04478-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04478-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08736-3

  • Online ISBN: 978-3-662-04478-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics