Advertisement

Tumor Necrosis Factor: Mechanism of Action and its Potential for Anticancer Therapy

  • W. Fiers
  • R. Beyaert
  • P. Brouckaert
  • E. Decoster
  • D. De Valck
  • B. Everaerdt
  • J. Grooten
  • A. Lenaerts
  • C. Libert
  • K. Schulze-Osthoff
  • N. Takahashi
  • S. Van Bladel
  • C. Van Dorpe
  • B. Vanhaesebroeck
  • X. Van Ostade
  • F. Van Roy
Conference paper

Abstract

Tumor Necrosis Factor (TNF) is secreted by appropriately induced monocytes and also by some T-cells. The subunit of TNF is a 17 kDa polypeptide, while the native molecule corresponds to a trimer. The three-dimensional structure has been solved at 2.6 Å resolution. Studies on mutants provided evidence for localization of receptor binding sites (three per trimer) in clefts between subunits (one site for each cleft). TNF (in combination with IFN-γ) is a promising anticancer agent, provided the therapeutic index can be improved. The antitumor activity can be enhanced by the presence of LiC1, but this combination is not without effects on normal cells; when TNF + LiCI was injected in the skin, a rapid, local inflammation was observed.

TNF has two pathways of action, a nucleus-independent cytotoxic effect and transcriptional activation of a defined set of genes leading e.g. to IL6 synthesis. This transcriptional activation of the IL6 gene is also very strongly enhanced by Li+, suggesting that Li+ acts early in the common signal transduction pathway. There is an overlap with the signal transduction pathway induced by IL6, as also some ILl effects are dramatically increased by Li+.

Expression of the endogenous or an exogenous TNF gene in a sensitive cell renders it resistant to TNF. Are TNF-producing tumor cells more tumorigenic? We compared the tumorigenicity in nude mice of tumor cells varying in their TNF expression level. No cachexia was observed. However, with these subcutaneous tumors, the expression level of TNF correlated with a much reduced tumor growth. In fact, the (locally produced) TNF seems to induce a host response leading to encapsulation of the tumor. This may possibly be due to the mitogenic effect of TNF on fibroblasts.

TNF and IL 1 are strong inducers of IL6. The latter peaks at about 2–3 h and then disappears from circulation. However, in the case of highly toxic treatments (high mTNF dose, TNF together with ILI or TNF together with RU486), the 1L6 level in circulation at later times even increases and this correlates with subsequent death. Possibly small amounts of IL6 are protective, but high concentrations contribute to lethality.

One can tolerize mice towards moderate doses of TNF by daily administration of small concentrations of TNF for 5–6 days. This tolerization also works in mice bearing a B16 melanoma tumor. After tolerization, the anticancer treatment can be started by paralesional administration of moderate doses of TNF + IFN-γ. This leads to complete tumor regression with a stirvival of 80%. These tumor model systems offer promising indications for therapeutic use of TNF in cancer patients.

Keywords

Tumor Necrosis Factor Lithium Chloride Lithium Salt Endotoxin Tolerance Human Tumor Necrosis Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carswell EA, Old LJ, Kassel RL, Green S, Fiore N and Williamson B, An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 72: 3666–3670, 1975.PubMedCrossRefGoogle Scholar
  2. 2.
    Williamson BD, Carswell EA, Rubin BY, Prendergast JS and Old LJ, Human tumor necrosis factor produced by human B-cell lines: Synergistic cytotoxic interaction with human interferon. Proc. Natl. Acad. Sci. USA 80: 5397–5401, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Fransen L, Van der Heyden J, Ruysschaert R and Fiers W, Recombinant tumor necrosis factor: Its effect and its synergism with interferon-y on a variety of normal and transformed human cell lines. Eur. J. Cancer Clin. Oncol. 22: 419–426, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Pennica D, Nedwin GE, Hayflick JS, Seeburg PH, Derynck R, Palladino MA, Kohr WJ, Aggarwal BB and Goeddel DV, Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin. Nature 312: 724–729, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Marmenout A, Fransen L, Tavernier J, Van der Heyden J, Tizard R, Kawashima E, Shaw A, Johnson MJ, Semon D, Müller R, Ruysschaert MR, Van Vliet A and Fiers W, Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. Eur. J. Biochem. 152: 515–522, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones EY, Stuart DI and Walker NP C, Structure of tumor necrosis factor. Nature 338: 225–228, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Eck MJ and Sprang SR, The structure of tumor necrosis factor-a at 2.6 A resolution. Implications for receptor binding. J. Biol. Chem. 264: 17595–17605, 1989.PubMedGoogle Scholar
  8. 8.
    Lewit-Bentley A, Fourme R, Kahn R, Prangé T, Vachette P, Tavernier J, Hauquier G and Fiers W, Structure of tumour necrosis factor by X-ray solution scattering and preliminary studies by single crystal X-ray diffraction. J. Mol. Biol. 199: 389–392, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Ostade X, Tavernier J, Prangé T and Fiers W, Localization of the active site of human tumour necrosis factor (hTNF) by mutational analysis. EMBO J. 10: 827–836, 1991.PubMedGoogle Scholar
  10. 10.
    Espevik T, Brockhaus M, Loetscher H, Nonstad U and Shalaby R, Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J. Exp. Med. 171: 415–426, 1990.PubMedCrossRefGoogle Scholar
  11. 11.
    Engelmann H, Hohmann H, Brakebusch C, Shemer Avni Y, Sarov I, Nophar Y, Hadas E, Leitner O and Wallach D, Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J. Biol. Chem. 265: 14497–14504, 1990.PubMedGoogle Scholar
  12. 12.
    Beyaert R, Vanhaesebroeck B, Suffys P, Van Roy F and Fiers W, Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo. Proc. Natl. Acad. Sci. USA 86: 9494–9498, 1989.CrossRefGoogle Scholar
  13. 13.
    Beyaert R, De Potter C, Vanhaesebroeck B, Van Roy F and Fiers W, Induction of inflammatory cell infiltration and necrosis in normal mouse skin by the combined treatment with tumor necrosis factor and lithium chloride. Am. J. Pathol. 138: 727–739, 1991.PubMedGoogle Scholar
  14. 14.
    Rubin BY, Anderson SI, Sullivan SA, Williamson BD, Carswell EA and Old LJ, Nonhematopoietic cells selected for resistance to tumor necrosis factor produce tumor necrosis factor. J. Exp. Med. 164: 1350–1355, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Vanhaesebroeck B, Van Bladel S, Lenaerts A, Suffys P, Beyaert R, Lucas R, Van Roy F and Fiers W, Two discrete types of tumor necrosis factor-resistant cells derived from the same cell line. Cancer Res. 51: 2469–2477, 1991.PubMedGoogle Scholar
  16. 16.
    Vanhaesebroeck B, Decoster E, Van Bladel S, Lenaerts A, Van Ostade X, Van Roy F and Fiers W, Expression of an exogenous TNF gene in TNF-sensitive cells confers resistance to TNFmediated cell lysis. Submitted.Google Scholar
  17. 17.
    Krönke M, Hensel G, Schlüter C, Scheurich P, Schütze S and Pfizenmaier K, Tumor necrosis factor and lymphotoxin gene expression in human tumor cell lines. Cancer Res. 48: 5417–5421, 1988.PubMedGoogle Scholar
  18. 18.
    Spriggs D, Imamura K, Rodriguez C, Horiguchi J and Kufe DW, Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc. Natl. Acad. Sci. USA 84: 6563–6566, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Vanhaesebroeck B, Mareel M, Van Roy F, Grooten J and Fiers W, Expression of the tumor necrosis factor gene in tumor cells correlates with reduced tumorigenicity and reduced invasiveness in vivo. Cancer Res. 51: 2229–2238, 1991.Google Scholar
  20. 20.
    Johnston CA and Greisman SE, Mechanisms of endotoxin tolerance. In: Pathophysiology of Endotoxin (Hinshaw LB, ed), Amsterdam, Elsevier, Vol 2, pp 359–401, 1985.Google Scholar
  21. 21.
    Fraker DL, Stovroff MC, Merino MJ and Norton JA, Tolerance to tumor necrosis factor in rats and the relationship to endotoxin tolerance and toxicity. J. Exp. Med. 168: 95–105, 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi N, Brouckaert P and Fiers W, Induction of tolerance allows separation of lethal and antitumor activities of tumor necrosis factor in mice. Cancer Res. 51: 2366–2372, 1991.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. Fiers
    • 1
  • R. Beyaert
    • 1
  • P. Brouckaert
    • 1
  • E. Decoster
    • 1
  • D. De Valck
    • 1
  • B. Everaerdt
    • 1
  • J. Grooten
    • 1
  • A. Lenaerts
    • 1
  • C. Libert
    • 1
  • K. Schulze-Osthoff
    • 1
  • N. Takahashi
    • 1
  • S. Van Bladel
    • 1
  • C. Van Dorpe
    • 1
  • B. Vanhaesebroeck
    • 1
  • X. Van Ostade
    • 1
  • F. Van Roy
    • 1
  1. 1.Laboratory of Molecular BiologyState UniversityGentBelgium

Personalised recommendations