Skip to main content

Synthetic Genome Technologies

  • Chapter
  • First Online:
Synthetic Biology

Abstract

The current debate on synthetic biology and artificial life is often seen as a theoretical exercise with not much basis in reality. So far, laboratories have not made many advances in creating completely new life forms, but at the same time, the increasing technical potential to radically change the genome of existing life forms has escaped broader public attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annaluru, N., Muller, H., Mitchell, L.A., Ramalingam, S., Stracquadanio, G., Richardson, S.M., … Chandrasegaran, S. (2014). Total Synthesis of a Functional Designer Eukaryotic Chromosome. Science, 344(6179), 55–58. doi: 10.1126/science.1249252.

    Article  Google Scholar 

  • Baker, M. (2014). Gene editing at CRISPR speed. Nature Biotechnology, 32(4), 309–312.

    Article  Google Scholar 

  • Bauer-Panskus, A., Breckling, B., Hamberger, S., & Then, C. (2013). Cultivation-independent establishment of genetically engineered plants in natural populations: current evidence and implications for EU regulation. Environmental Sciences Europe, 25(1), 34. doi: 10.1186/2190–4715-25–34.

    Article  Google Scholar 

  • Bortesi, L., & Fischer, R. (2014). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52. doi: 10.1016/j.biotechadv.2014.12.006.

    Article  Google Scholar 

  • Carr, P.A., Wang, H.H., Sterling, B., Isaacs, F.J., Lajoie, M.J., Xu, G., Church, G.M., & Jacobson, J.M. (2012). Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Research. 40(17), e132. doi: 10.1093/nar/gks455.

    Article  Google Scholar 

  • Church, G., & Regis, E. (2012). Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves. New York: Basic Books.

    Google Scholar 

  • Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., & Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822–826.

    Article  Google Scholar 

  • Gantz, V.M., & Bier, E. (2015). The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science, 348(6233), 442–444.

    Article  Google Scholar 

  • Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., … Venter, J.C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56.

    Article  Google Scholar 

  • Glass, J.T., Smith, H.O., Hutchinson, C.A., Alperovich, N.Y., & Assad-Garcia, N. (2007). International Patent WO2007/047148. Washington, D.C.: World Intellectual Property Organization.

    Google Scholar 

  • Hai, T., Teng, F., Guo, R., Li, W., & Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell research, 24(3), 372–375.

    Article  Google Scholar 

  • Intrexon (2013). Intrexon Corporation Raises $150 Million for Synthetic Biology Initiatives. Intrexon Corporation. http://investors.dna.com/phoenix.zhtml?c=249599&p=irol-newsArticle&ID=1844278&highlight=.Accessed: 30 April 2015.

  • JCVI (2010). J. Craig Venter Institute. First Self-Replicating Synthetic Bacterial Cell [Press Release]. http://www.jcvi.org/cms/press/press-releases/full-text/article/first-self-replicating-synthetic-bacterial-cell-constructed-by-j-craig-venter-institute-researcher/. Accessed: 28 April 2015.

  • Lusser, M., Parisi, C., Plan, D., & Rodríguez-Cerezo, E. (2011). New plant breeding techniques. Stateof-the-art and prospects for commercial development.(= JRC Scientific and Technical Reports/EUR 24760 EN).

    Google Scholar 

  • Pauwels, K., Podevin, N., Breyer, D., Carroll, D., & Herman, P. (2014). Engineering nucleases for gene targeting: safety and regulatory considerations. New Biotechnology, 31(1), 18–27.

    Article  Google Scholar 

  • Popper, K. (1992). In search of a better world. London: Routledge.

    Google Scholar 

  • Sander, J.D., & Joung, J.K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.

    Article  Google Scholar 

  • Segal, D.J., & Meckler, J.F. (2013). Genome engineering at the dawn of the golden age. Annual Review of Genomics and Human Genetics, 14, 135–158.

    Article  Google Scholar 

  • Tan, W., Carlson, D.F., Lancto, C.A., Garbe, J.R., Webster, D.A., Hackett, P.B., & Fahrenkrug, S.C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences, 110(41), 16526–16531.

    Google Scholar 

  • Then, C. (2015). Handbuch Agrogentechnik. München: Oekom Verlag.

    Google Scholar 

  • Vogel, B. (2012). Neue Pflanzenzuchtverfahren – Grundlagen für die Klärung offener Fragen bei der rechtlichen Regulierung neuer Pflanzenzuchtverfahren. Bundesamt für Umwelt

    Google Scholar 

  • (BAFU), Sektion Biotechnologie, Bern; Baudirektion des Kantons Zürich, Amt für Abfall, Wasser, Energie und Luft (AWEL), Sektion Biosicherheit (SBS). www.awel.zh.ch/internet/baudirektion/awel/de/biosicherheit_neobiota/veroeffentlichungen/_jcr_content/contentPar/publication_2/publicationitems/titel_wird_aus_dam_e_0/download.spooler.download.1372927394124.pdf/Schlussbericht_NeuePflanzenzuchtverfahren_DEZ2012.pdf. Accessed: 30 April 2015.

  • Vogel, G. (2015). Embryo engineering alarm, researchers call for restraint in genome editing. Science, 347(6228), 1301. doi: 10.1126/science.347.6228.1301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Then, C. (2016). Synthetic Genome Technologies. In: Boldt, J. (eds) Synthetic Biology. Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-10988-2_12

Download citation

Publish with us

Policies and ethics