Advertisement

Trends der Human Resource Intelligence und Analytics

Chapter

Zusammenfassung

Bedingt durch stetige technische Weiterentwicklungen ist die Human Resource Intelligence und Analytics (HRIA) kontinuierlichen Veränderungen unterworfen. Das vorliegende Kapitel verwendet daher mit dem Technologieradar eine Methode der Technologiefrüherkennung, um für die HR-Domäne relevante, künftige Intelligence- und Analytics-Technologien zu identifizieren, zu kategorisieren und zu dokumentieren. Konkret werden dabei die zwölf Trends Predictive HR Analytics, HR Process Analytics, HR Text und Sentiment Analytics, Operational HR Analytics, Self Service HR Analytics, Collaborative HR Analytics, Visual HR Analytics, Mobile HR Analytics, Real Time HR Analytics, Big HR Data Analytics und Inmemory HR Analytics berücksichtigt. Dies ermöglicht einen Überblick über künftige Entwicklungen und deren Einschätzung und Berücksichtigung im Rahmen anstehender praktischer HRIA-Projekte.

Literatur

  1. Aggarwal, C. C., & Zhai, C. X. (2012). An introduction to text mining. In C. C. Aggarwal & C. X. Zhai (Hrsg.), Mining text data (S. 1–10). Berlin: Springer. doi:10.1007/978-1-4614-3223-4.CrossRefGoogle Scholar
  2. Agrawal, D. (2009). The reality of real-time business intelligence. In C. Bussler, M. Castellanos, U. Dayal, & S. Navathe (Hrsg.), Business intelligence for the real-time enterprises (S. 75–88). Berlin: Springer. doi:10.1007/978-3-642-03422-0.CrossRefGoogle Scholar
  3. Aqel, D., & Vadera, S. (2010). A framework for employee appraisals based on sentiment analysis. Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications. doi:10.1145/1874590.1874598.Google Scholar
  4. Airinei, D., & Homocianu, D. (2010). The mobile business intelligence challenge. Economy Informatics, 10(1), 5–12.Google Scholar
  5. Azvine, B., Cui, Z., & Nauck, D. D. (2005). Towards real-time business intelligence. BT Technology Journal, 23(3), 214–225. doi:10.1007/s10550-005-0043-0.CrossRefGoogle Scholar
  6. Bange, C., & Hinterberger, J. (2012). Self Service BI – Unabhängigkeit für Fachanwender. CeBIT Guide Business Intelligence.Google Scholar
  7. Bensberg, F. (2008). Mobile Business Intelligence. Besonderheiten, Potentiale und prozessorientierte Gestaltung. In H. Bauer, T. Dirks, & M. D. Bryant (Hrsg.), Erfolgsfaktoren des Mobile Marketing. Strategien, Konzepte und Instrumente (S. 72–87). Berlin: Springer. doi:10.1007/978-3-540-85296-4.Google Scholar
  8. Bersin, J. (2012). Big data in HR: Building a competitive talent analytics function – The four stages of maturity. Bersin White Paper.Google Scholar
  9. Bertini, E., & Lalanne, D. (2010). Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. ACM SIGKDD Explorations Newsletter, 11(2), 9–18. doi:10.1145/1809400.1809404.CrossRefGoogle Scholar
  10. Berthold, H., Rösch, P., Zöller, S., Wortmann, F., Carenini, A., Campbell, S., Bisson, P., & Strohmaier, F. (2010). An architecture for ad-hoc and collaborative business intelligence. Proceedings of the 2010 EDBT/ICDT Workshops. doi:10.1145/1754239.1754254.Google Scholar
  11. Brindha, G. R., & Santhi, B. (2012). Application of opinion mining technique in talent management. Proceedings of 2012 International Conference on Management Issues in Emerging Economies (ICMIEE).Google Scholar
  12. Castellanos, M., Alves de Medeiros, K., Mendling, J., Weber, B., & Weitjers, A. J. M. M. (2009). Business process intelligence. In J. Cardoso & W. van der Aalst (Hrsg.), Handbook of research on business process modeling (S. 456–480). Hershey: IGI Global doi:10.4018/978-1-60566-288-6.ch021.CrossRefGoogle Scholar
  13. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188.Google Scholar
  14. CIPD. (2013). Talent analytics and big data – the challenge for HR.Google Scholar
  15. Davis, J. R., White, C., & Imhoff, C. (2009). Operational business intelligence: The state of the art. Business Intelligence Research.Google Scholar
  16. Dayal, U., Vennelakanti, R., Sharma, R., Castellanos, M., Hao, M., & Patel, C. (2008). Collaborative business intelligence: Enabling collaborative decision making in enterprises. In: On the Move to Meaningful Internet Systems: OTM 2008 (S. 8–25), Berlin: Springer. doi:10.1007/978-3-540-88871-0_5.Google Scholar
  17. Dayal, U., Kuno, H., Wiener, J. L., Wilkinson, K., Ganapathi, A., & Krompass, S. (2009). Managing operational business intelligence workloads. SIGOPS Operating Systems Review, 43(1), 92–98. doi:10.1145/1496909.1496927.CrossRefGoogle Scholar
  18. Eckerson, W. W. (2007a). Best practices in operational BI. Renton: TDWI.Google Scholar
  19. Eckerson, W. W. (2007b). Predictive analytics – Extending the value of your data warehousing investment. Renton: TDWI.Google Scholar
  20. Evelson, B. (2012). The Forrester Wave™: Self Service business intelligence platforms, Q2 2012: Forrester Research.Google Scholar
  21. Fayyad, U., Piatestky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases: An overview. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & F. Uthurusamy (Hrsg.), Advances in knowledge discovery and data mining (S. 1–34). Cambridge: MIT Press. doi:10.1609/aimag.v17i3.1230.Google Scholar
  22. Fitz-enz, J. (2009). Predicting people. From metrics to analytics. Employment Relations Today, 36(3), 1–11. doi:10.1002/ert.20255.CrossRefGoogle Scholar
  23. Golfarelli, M. (2009). Open source BI platforms: A functional and architectural comparison. Lecture Notes in Computer Science, 5691, 287–297. doi:10.1007/978-3-642-03730-6_23.CrossRefGoogle Scholar
  24. Hackathorn, R. (2004). The BI watch: Real-time to real-value. DM review, 14, 24–29.Google Scholar
  25. Hrach, C., & Alt, R. (2012). Operational Business Intelligence bei Call-Centern – Erkenntnisse einer Fallstudienuntersuchung. In D. C. Mattfeld & S. Robra-Bissantz (Hrsg.), Multikonferenz Wirtschaftsinformatik, Braunschweig (S. 1131–1143). doi:10.1007/978-3-642-03722-1 7901 09-01-13.Google Scholar
  26. Hu, X., & Liu, H. (2012). Text analytics in social media. In C. C. Aggarwal & C. X. Zhai (Hrsg.), Mining text data (S. 385–414). Berlin: Springer.Google Scholar
  27. Imhoff, C., & White, C. (2011). Self Service business intelligence – Empowering users to generate insights. TDWI Best Practice Report.Google Scholar
  28. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., & Melancon, G. (2008). Visual analytics: Definition, process, and challenges. Lecture Notes in Computer Science, 4950, 154–175. doi:10.1007/978-3-540-70956-5_7.CrossRefGoogle Scholar
  29. Kemper, H.-G., Baars, H., & Lasi, H. (2012). Business Intelligence – Entscheidungsunterstützung für Management und Controlling im Laufe der Zeit. In R. Gleich, R. Mayer, K. Möller, & M. Seiter (Hrsg.), Controlling – Relevance lost? Perspektiven für ein zukunftsfähiges Controlling (S. 117–133). München: Vahlen.Google Scholar
  30. Kohlhammer, J., Keim, D., Pohl, M., Santucci, G., & Andrienko, G. (2011). Solving problems with visual analytics. Procedia Computer Science, 7, 117–120. doi: 10.1016/j.procs.2011.12.035.CrossRefGoogle Scholar
  31. Koleva, G. (2013). Fields of usage for in-memory databases in enterprises. 11th Workshop on Information Systems and Services Sciences, 18–29.Google Scholar
  32. Linden, M. (2010). Business-Intelligence-Ansatz zur Verbesserung von Geschäftsprozessen. In H. Baars (Hrsg.), Business Intelligence im Spannungsfeld von Effizienz und Agilität. Forschungskolloquium Business Intelligence (S. 33–38). Dresden.Google Scholar
  33. Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In C. C. Aggarwal & C. X. Zhai (Hrsg.), Mining text data (S. 415–463). Berlin: Springer.CrossRefGoogle Scholar
  34. Loos, P., Strohmeier, S., Piller, G., & Schütte, R. (2012). Kommentare zu „In-Memory-Datenmanagement in betrieblichen Anwendungssystemen“. Wirtschaftsinformatik, 54(4), 209–213. doi:10.1007/s11576-012-0328-0.CrossRefGoogle Scholar
  35. Marjanovic, O. (2007). The next stage of operational business intelligence: Creating new challenges for business process management. Proceedings of the 40th Annual Hawaii International Conference on System Sciences, Hawaii. doi:10.1109/HICSS.2007.551.Google Scholar
  36. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. doi:10.1561/1500000011.CrossRefGoogle Scholar
  37. Piazza, F. (2010). Data Mining im Personalmanagement. Eine Untersuchung der Einsatzpotenziale zur Entscheidungsunterstützung. Wiesbaden: Gabler.CrossRefGoogle Scholar
  38. Russom, P. (2007). BI search and text analytics. TDWI Best Practices Report.Google Scholar
  39. Russom, P. (2011). Big data analytics. TDWI Best Practices Report.Google Scholar
  40. Sandu, D. I. (2008). Operational and real-time business intelligence. Revista Informatica Economică, 47(3), 33–36.Google Scholar
  41. Schneider, D. A. (2007). Practical considerations for real-time business intelligence. In C. Bussler, M. Castellanos, U. Dayal, & S. Navathe (Hrsg.), Business intelligence for the real-time enterprises (S. 1–3). Berlin: Springer.CrossRefGoogle Scholar
  42. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. Proceedings of IEEE Symposium on Visual Languages. doi:10.1109/VL.1996.545307.Google Scholar
  43. Spath, D., Warschat, J., Ardilio, A., & Bunzel, S. (2011). Technologiemanagement. Radar für den Erfolg. Ludwigsburg: Log_X.Google Scholar
  44. Strohmeier, S. (2008). Informationssysteme im Personalmanagement: Architektur – Funktionalität – Anwendung. Wiesbaden: Vieweg+Teubner.Google Scholar
  45. Strohmeier, S. (2013). Big data in the HR function – Does it really exist and is it really useful? In HRZone (Hrsg.), HR Technology – theoretical and practical insights from leading European and International academics(S. 12–15).Google Scholar
  46. Strohmeier, S., & Piazza, F. (2013). Domain driven data mining in human resource management: A review of current research. Expert Systems with Applications, 40(7), 2410–2420. doi:10.1109/ICDMW.2011.68CrossRefGoogle Scholar
  47. van der Aalst, W. M. P. (2011). Process mining. Discovery, conformance and enhancement of business processes. Berlin: Springer.Google Scholar
  48. Wellensiek, M., Schuh, G., Hacker, P. A., & Saxler, J. (2011). Technologiefrüherkennung. In G. Schuh & S. Klappert (Hrsg.), Technologiemanagement. Handbuch Produktion und Management 2 (S. 89–169). Berlin: Springer.Google Scholar
  49. Wessel, P., Köffer, S., & Becker, J. (2013). Auswirkungen von In-Memory-Datenmanagement auf Geschäftsprozesse im Business Intelligence. Proceedings of 11th International Conference Wirtschaftsinformatik. Leipzig. doi:10.1007/s11576-011-0296-9.Google Scholar
  50. White, C. (2006). The next generation of business intelligence: Operational BI. Ashland: BI Research.Google Scholar
  51. Zoumpatianos, K., Palpanas, T., & Mylopoulos, J. (2012). Strategic management for real-time business intelligence. International Workshop on Business Intelligence for the Real Time Enterprise (BIRTE). doi:10.1007/978-3-642-39872-8_9.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • Stefan Strohmeier
    • 1
  • Franca Piazza
    • 1
  • Christian Neu
    • 1
  1. 1.SaarbrückenDeutschland

Personalised recommendations