Advertisement

Abstract

The term “starch” is restricted here to mean the iodine-staining polysaccharide occuring in plants as cold-water-insoluble granules of characteristic shape. Little is yet known of the iodine-staining polysaccharides found dissolved in the cell sap of certain plants (Reichert 1913) but in the one case (sweet corn) which has received detailed examination, this soluble polysaccharide has many of the characteristics of the animal reserve polysaccharide glycogen (p.187ff.). Such soluble polysaccharides have often been termed “dextrins” on account of the similarity of their iodine stain to that of degraded starch. There is no definite evidence that they do originate from granular starch or that they are its precursors. Their infrequent and sporadic occurrence implies that they are abnormalities. Future research may possibly reveal that all these soluble “dextrins” are of the glycogen type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abdel-Ahker, M., J. K. Hamilton, R. Montgomery and F. Smith: A new procedure for the determination of the fine structure of polysaccharides. J. Amer. Chem. Soc. 74, 4970–4971 (1952).CrossRefGoogle Scholar
  2. Abdel-Ahker, M., and F. Smith: The repeating unit of glycogen. J. Amer. Chem. Soc. 73, 994–996 (1951).CrossRefGoogle Scholar
  3. Alsberg, C. L.: Structure of the starch granule. Plant Physiol. 13, 295–330 (1938).PubMedCrossRefGoogle Scholar
  4. Anderson, D. M. W., and C. T. Greenwood: A simple electrometer for small-scale potentiometric titrations. Chem. a. Ind. 1953a, 476.Google Scholar
  5. The characterization of branched α-1:4-glucosans. Chem. a. Ind. 1953b, 642.Google Scholar
  6. Anderson, D. M. W., C. T. Greenwood and E. L. Hirst: Physicochemical studies on starches. II. The oxidation of starches by potassium metaperiodate. J. Chem. Soc. (Lond.) 1955, 225–231.Google Scholar
  7. Arregttin-Lozano, B., and J. Bonner: Experiments in sucrose formation by potato tubers as influenced by temperature. Plant Physiol. 24, 720–738 (1949).CrossRefGoogle Scholar
  8. Aspinall, G. O., and R. G. J. Telfer: The occurrence of glucose residues in inulin. Chem. a. Ind. 1953, 490.Google Scholar
  9. Back, T. M., W. H. Stark and R. E. Scalf: Measurement of enzymatic activity on limit dextrin. Analyt. Chem. 20, 56–60 (1948).CrossRefGoogle Scholar
  10. Bacon, E. E., and J. S. D. Bacon: The occurrence of isomaltose among the products of heating glucose in dilute mineral acid. Biochemic. J. 58, 396–402 (1954).Google Scholar
  11. Badenhuizen, N. P.: Das Stärkekorn als chemisch einheitliches Gebilde. Rec. Trav. bot. néerl. 35, 559–679 (1938).Google Scholar
  12. Swelling of starch grains. Trans. Faraday Soc. B 42, 255–259 (1946).Google Scholar
  13. Swollen starch grains and osmotic cells. Experientia (Basel) 9, 136 (1953).Google Scholar
  14. The growth of starch grains in relation to genotype and environment. S. Afric. J. Sci. 51, 41–47 (1954).Google Scholar
  15. Bailey, J. M.: Starch-metabolising enzymes. Ph. D. Thesis. University of Wales 1952.Google Scholar
  16. Bailey, J. M., S. Peat and W. J. Whelan: The minimum chain length for Q-enzyme action. Biochemic. J. 51, XXXIV (1952).Google Scholar
  17. Bailey, J. M., G. J. Thomas and W. J. Whelan: Selective inhibition of enzymic impurities associated with potato phosphorylase. Biochemie. J. 49, LVI (1951).Google Scholar
  18. Bailey, J. M., and W. J. Whelan: The enzymic synthesis and degradation of starch. XI. Isophosphorylase. J. Chem. Soc. Lond. 1950, 3573–3579.Google Scholar
  19. The action pattern of β-amylase. Biochemic. J. in the press (1957).Google Scholar
  20. Bailey, J. M., W. J. Whelan and S. Peat: Carbohydrate primers in the synthesis of starch. J. Chem. Soc. Lond. 1950, 3692.Google Scholar
  21. Baker, F., and P. Hobson: The selective staining of intact and damaged starch granules by Safranin O and Niagara Blue 4 B. J. Sci. Food Agric. 3, 608–612 (1952).CrossRefGoogle Scholar
  22. Baker, F., H. Nasr, F. Morrice and J. Bruce: Bacterial breakdown of structural starches in the digestive tract of ruminant and nonruminant mammals. J. of Path. 62, 617–638 (1950).CrossRefGoogle Scholar
  23. Baker, F., and W. J. Whelan: Some morphological features accompanying the aerobic photodegradation of whole potato starch. Nature (Lond.) 165, 449 (1950a).CrossRefGoogle Scholar
  24. Birefringence of amylose and amylopectin in whole structural starches. Nature (Lond.) 166, 34 (1950b).Google Scholar
  25. Birefringence iodine reactions and fine structure of waxy starches. J. Sci. Food Agric. 2, 444–446 (1951).Google Scholar
  26. Baldwin, R. R., R. S. Bear and R. E. Rundle: Relation of starch-iodine absorption spectra to the structure of starch and starch components. J. Amer. Chem. Soc. 66, 111–115 (1944).CrossRefGoogle Scholar
  27. Ballou, G. A., and J. M. Luck: The effects of different buffers on the activity of β-amy]ase. J. of Biol. Chem. 139, 233–240 (1941).Google Scholar
  28. Ballou, C. E., and E. G. V. Percival: Wood starches. II. The structure of the sapwood starch of the maple (Acer spp.). J. Chem. Soc. Lond. 1952, 1054–1056.Google Scholar
  29. Balls, A. K., and S. Schwimmer: Digestion of raw starch. J. of Biol. Chem. 156, 203–210 (1944).Google Scholar
  30. Balls, A. K., and I. W. Tucker: Extraction of diastase and recovery of protein from wheat. Fruit Prod. J. 23, 15–16, 21 (1943).Google Scholar
  31. Balls, A. K., M. K. Walden and R. R. Thompson: A crystalline β-amylase from sweet potatoes. J. of Biol. Chem. 173, 9–19 (1948).Google Scholar
  32. Barker, C.C., E.L. Hirst and G. T. Young: Linkage between the repeating units in the starch molecule. Nature (Lond.) 147, 296 (1941).CrossRefGoogle Scholar
  33. Barker, S.A., A. Bebbington and E. J. Bourne: The mode of action of the Q-enzyme of Polytomella coeca. J. Chem. Soc. Lond. 1953, 4051–4057.Google Scholar
  34. Barker, S. A., and E. J. Bourne: Enzymic synthesis of polysaccharides. Quart. Rev. Chem. Soc, Lond. 7, 56–83 (1953).CrossRefGoogle Scholar
  35. Barker, S. A., E. J. Bourne and S. Peat: The enzymic synthesis and degradation of starch. IV. The purification and storage of the Q-enzyme of the potato. J. Chem. Soc. Lond. 1949a, 1705–1711.Google Scholar
  36. The enzymic synthesis and degradation of starch. V. The action of Q-enzyme on starch and its components. J. Chem. Soc. Lond. 1949b, 1712–1717.Google Scholar
  37. Barker, S. A., E. J. Bourne, S. Peat and I. A. Wilkinson: The enzymic synthesis and degradation of starch. VIII. The use of mixtures of P- and Q-enzymes in the synthesis of starch-type polysaccharides. J. Chem. Soc. Lond. 1950. 3022–3027.Google Scholar
  38. Barker, S. A., E. J. Bourne and I. A. Wilkinson: The enzymic synthesis and degradation of starch. IX. Methylation and end-group assay of some synthetic polysaccharides. J. Chem. Soc. Lond. 1950, 3027–3030.Google Scholar
  39. Barker, S. A.. E. J. Bourne, I. A. Wilkinson and S. Peat: The enzymic synthesis and degradation of starch. VI. The properties of purified P- and Q-enzymes. J. Chem. Soc. Lond. 1950a, 84–92.Google Scholar
  40. The enzymic synthesis and degradation of starch. VII. Mechanism of Q-enzyme action. J. Chem. Soc. Lond. 1950b, 93–99.Google Scholar
  41. Barry, V. C., T.Dillon and W. Mc Gettrick: Periodic acid as a test for the constitution of polysaccharides. J. Chem. Soc. Lond. 1942, 183–185.Google Scholar
  42. Bates, F. L., D.French and R. E. Rundle: Amylose and amylopectin content of starches determined by their iodine complex formation. J. Amer. Chem. Soc. 65, 142–148 (1943).CrossRefGoogle Scholar
  43. Bauer, A. W., and E. Pacsu: Starch studies. IV. Concepts of structure. Textile Res. J. 23, 853–859 (1953a).CrossRefGoogle Scholar
  44. Starch studies. VII. Properties of starch solutions and the kinetics of starch disaggregation. Textile Res. J. 23, 870–877 (1953b).Google Scholar
  45. Baum, H., and G. A. Gilbert: A simple method for the preparation of crystalline potato phosphorylase and Q-enzyme. Nature (Lond.) 171, 983–984 (1953).CrossRefGoogle Scholar
  46. The anaerobic fractionation of potato starch. Chem. a. Ind. 1954a, 490.Google Scholar
  47. The anaerobic dispersion of potato starch. Oxygen-sensitive bonds in starch. Chem. a. Ind. 1954b, 489–490.Google Scholar
  48. Bebbington, A., E. J. Bourne and I. A. Wilkinson: The conversion of amylose into amylopectin by the Q-enzyme of Polytomella coeca. J. Chem. Soc. Lond. 1952, 246–253.Google Scholar
  49. Bechtel, W. G.: Examination of starch dispersions with the phase microscope. Cereal Chem. 28, 29–39 (1951).Google Scholar
  50. Beckmann, C. O.: The structure of amylopectin and glycogen. Ann. New York Acad. Sci. 57, 384–397 (1953).CrossRefGoogle Scholar
  51. Beckmann, C. O., and M. Roger: The question of the branching enzyme in potatoes. J. of Biol. Chem. 190, 467–480 (1951).Google Scholar
  52. Bell, D. J.: Applications of periodate oxidation to some problems of carbohydrate chemistry. J. Chem. Soc. Lond. 1948, 992–996.Google Scholar
  53. Carbohydrate chemistry. Annual Rev. Biochem. 18, 87–96 (1949).Google Scholar
  54. Mono- and oligosaccharides and acidic monosaccharide derivatives. Modern Methods of Plant Analysis, vol. II, p. 1–54. Berlin: Springer 1955.Google Scholar
  55. Bell, D. J., and D. J. Manners: The action of crystalline β-amylase on some glycogens. J. Chem. Soc. Lond. 1952, 3641–3645.Google Scholar
  56. α-l:4-Glucosaris. I. The inter-chain linkages in glycogens. J. Chem. Soc. Lond. 1954, 1891–1893.Google Scholar
  57. Bell, D. J., D. J. Manners and A. Palmer: Observations on the reduction of alkaline 3:5-dinitrosalicylic acid by certain carbohydrates. J. Chem. Soc. Lond. 1952, 3760–3763.Google Scholar
  58. Benner, K., u. K. Myrbäck: Inactivation of saccharase and salivary amylase by l-fluoro-2,4-dinitrobenzene. Ark. Kemi (Stockh.) 4, 7–10 (1952).Google Scholar
  59. Bernfeld, P.: Enzymes of starch degradation and synthesis. Adv. Enzymol. 12, 379–428 (1951).Google Scholar
  60. Amylases, α and β. Methods in Enzymology 1, 149–158. New York: Academic Press 1955.Google Scholar
  61. Bernfeld, P., F. Duckert et E. H. Fischer: Sur les enzymes amylolytiques. XV. Propriétés de l’α-amylase de pancréas humain. Comparaison avec les autres α-amylases cristallisées. Helvet. chim. Acta 33, 1064–1070 (1950).CrossRefGoogle Scholar
  62. Bernfeld, P., u. M. Fuld: (i) Sur les enzymes amylolytiques. IV. Dosage de l’activité de l’α-amylase. (ii) V. Comparaison de l’action enzymatique d’α-amylases de diverses provenances. Helvet. chim. Acta 1948, (i) 1420–1423, (ii) 1423–1427.Google Scholar
  63. Bernfeld, P., u. P. Gürtler: Recherches sur l’amidon. XXXVIII. Méthode perfectionée de dégradation β-amylatique de l’amylose et de l’amylopectine. Helvet. chim. Acta 31, 106–108 (1948).PubMedCrossRefGoogle Scholar
  64. Bernfeld, P., u. A. Meutémédian: (i) Sur les enzymes amylolytiques. VI. L’isophosphorylase. (ii) VII. L’isophosphorylase et la formation de polysaccharides ramifiés. Helvet. chim. Acta 31, (i) 1724–1735, (ii) 1735–1739 (1948).PubMedCrossRefGoogle Scholar
  65. Bernfeld, P., A. Staub u. E. H. Fischer: Sur les enzymes amylolytiques. XL Propriétés de l’α-amylase de salive humaine crystallisée. Helvet. chim. Acta 31, 2165–2172 (1948).PubMedCrossRefGoogle Scholar
  66. Bernfeld, P., u. H. Studer-Pécha: Recherches sur l’amidon. XXXV. La degradation de l’amylose par l’α-amylase. Helvet. chim. Acta 30, 1895–1903 (1947a).CrossRefGoogle Scholar
  67. Sur les enzymes amylolytiques. II. L’affinité entre enzyme et substratum pour quelques α-amylases. Helvet. chim. Acta 30, 1904–1910 (1947b).Google Scholar
  68. Bird, R., and R. H. Hopkins: β-Amylolysis: union of enzyme and substrate. Biochemic. J. 57, 162–165 (1954a).Google Scholar
  69. The mechanism of β-amylase action. 2. ‘Multichain’ action on amylose fission products. Biochemic. J. 56, 140–146 (1954b).Google Scholar
  70. Blish, M. J., R. M. Sandstedt and D. K. Mecham: Action of wheat amylases on raw wheat starch. Cereal Chem. 14, 605–628 (1937).Google Scholar
  71. Blom, J., u. B. Schwarz: Bindungstypen in der Stärke. Acta chem. scand. (Copenh.) 6, 697–708 (1952).CrossRefGoogle Scholar
  72. Booher, L. E., I. Behan, E. Mc Means and H. M. Boyd: Biological utilizations of unmodified and modified starches. J. Nutrit. 45, 75–99 (1951). Chem. Abstr. 46, 169 (1952).PubMedGoogle Scholar
  73. Bottle, R. T., and G. A. Gilbert: A magnification procedure for the estimation of the reducing end-groups of the components of starch. Chem. a. Ind. 1954, 1201–1202.Google Scholar
  74. Bottle, R, T., G. A. Gilbert, C. T. Greenwood and K. N. Saad: Degradation of potato amylose in neutral and alkaline solution. Chem. a. Ind. 1953, 541–542.Google Scholar
  75. Bourne, E. J.: Some recent developments in the academic fields of starch chemistry. Chem. a. Ind. 1951, 1047–1052.Google Scholar
  76. A correction. Chem. a. Ind. 1952, 216.Google Scholar
  77. The biological synthesis of starch. Biochem. Soc. Symposium No 11, 3–16. Cambridge: University Press 1953.Google Scholar
  78. Bourne, E. J., K. H. Fantes and S. Peat: A modified method for the end-group assay of amylose and other long-chain starch fractions. J. Chem. Soc. Lond. 1949, 1109–1113.Google Scholar
  79. Bourne, E. J., W. N. Haworth, A. Macey and S. Peat: The amylolytic degradation of starch. A revision of the hypothesis of sensitisation. J. Chem. Soc. Lond. 1948, 924–930.Google Scholar
  80. Bourne, E. J., A. Macey and S. Peat: The enzymic synthesis and degradation of starch. II. The amylolytic function of the Q-enzyme of the potato. J. Chem. Soc. Lond. 1945, 882–888.Google Scholar
  81. Bourne, E. J., and S. Peat: The enzymic synthesis and degradation of starch. I. The synthesis of amylopectin. J. Chem. Soc. Lond. 1945, 877–882.Google Scholar
  82. Bourne, E. J., D. A. Sitch and S. Peat: The enzymic synthesis and degradation of starch. III. The role of carbohydrate activators. J. Chem. Soc. Lond. 1949, 1448–1457.Google Scholar
  83. Bourne, E. J., and W. J. Whelan: Mechanism of the β-amylolysis of amylose. Nature (Lond.) 166, 258–259 (1950).CrossRefGoogle Scholar
  84. Brimhall, B.: Structure of pyrodextrins. Industr. Engng. Chem. (Industr.) 36, 72–75 (1944).CrossRefGoogle Scholar
  85. Brimhall, B., G. F. Sprague and J. E. Saas: A new waxy allel in corn and its effect on the properties of the endosperm starch. J. Amer. Soc. Agron. 37, 937–944 (1945).CrossRefGoogle Scholar
  86. Brown, F., T. G. Halsall, E. L. Hirst and J. K. N. Jones: The structure of starch. I. The ratio of non-terminal to terminal groups. J. Chem. Soc. Lond. 1948, 27–32.Google Scholar
  87. Bunton, C. A., T. A. Lewis, D. R. Llewellyn, H. Tristam and C. A. Vernon: Hydrolysis of methylglucosides. Nature (Lond.) 174, 560 (1954).CrossRefGoogle Scholar
  88. Caldwell, C. G., and R. M. Hixon: A study of the periodic acid oxidation of starches and dextrins as a means of determining molecular size. J. of Biol. Chem. 123, 595–606 (1938).Google Scholar
  89. Fractionation of waxy and ordinary cornstarch. J. Amer. Chem. Soc. 63, 2876–2880 (1941).Google Scholar
  90. Caldwell, M. L., and M. Adams: Action of certain alpha amylases. Adv. Carbohydrate Chem. 5, 229–268 (1950).CrossRefGoogle Scholar
  91. Caldwell, M. L., M. Adams, J.-F. T. Kung and G. C. Toralballa: Crystalline pancreatic amylase. II. Improved method for its preparation from hog pancreas glands and additional studies of its properties. J. Amer. Chem. Soc. 74, 4033–4035 (1952).CrossRefGoogle Scholar
  92. Caldwell, M. L., E. S. Dickey, V. M. Hanrahan, H. C. Kung, J.-F. T. Kung and M. Misko: Amino acid composition of crystalline pancreatic amylase from swine. J. Amer. Chem. Soc. 76, 143–147 (1954).CrossRefGoogle Scholar
  93. Caldwell, M. L., and J.-F. T. Kung: A study of the influence of a number of factors upon the stability and upon the activity of pancreatic amylase. J. Amer. Chem. Soc. 75, 3132–3135 (1953).CrossRefGoogle Scholar
  94. Cameron, J. W.: Chemico-genetic bases for the reserve carbohydrates in maize endosperm. Genetics 32, 459–485 (1947).Google Scholar
  95. Cameron, J. W., and H. J. Teas: Carbohydrate relationships in developing and mature endosperms of brittle and related maize genotypes. Amer. J. Bot. 41, 50–55 (1954).CrossRefGoogle Scholar
  96. Campbell, L. L.: Crystallization of α-amylase from a thermophilic bacterium. J. Amer. Chem. Soc. 76, 5256 (1954).CrossRefGoogle Scholar
  97. Campbell, W. G., J. L. Frahn, E. L. Hirst, D. F. Packman and E. G. V. Percival: Wood starches. I. J. Chem. Soc. Lond. 1951, 3489–3498.Google Scholar
  98. Cardini, C. E.: Activation of plant phosphoglucomutase by glucose l:6-diphosphate. Enzymologia (Den Haag) 15, 144–148 (1951).Google Scholar
  99. Carson, J. F., and W. F. Maclay: The acylation of polyuronides with formamide as a dispersing agent. J. Amer. Chem. Soc. 68, 1015–1017 (1946).CrossRefGoogle Scholar
  100. Cleveland, F. C., and R. W. Kerr: The action of β-amylase on amylose. Cereal Chem. 25, 133–139 (1948).Google Scholar
  101. Osmotic pressure studies on corn amylose. J. Amer. Chem. Soc. 71, 16–20 (1949).Google Scholar
  102. Cohn, M.: Mechanisms of cleavage of glucose-1-phosphate. J. of Biol. Chem. 180, 771–781 (1949).Google Scholar
  103. Cohn, M., and G. T. Cori: On the mechanism of action of muscle and potato phosphorylase. J. of Biol. Chem. 175, 89–93 (1948).Google Scholar
  104. Cori, G. T., and B. Illingworth: Note on the properties of synthetic amylopectin. J. of Biol. Chem. 190, 679–683 (1951).Google Scholar
  105. Cori, G. T., B. Illingworth and P. J. Keller: Muscle phosphorylase. Methods Enzymol. 1, 200–205 (1955).CrossRefGoogle Scholar
  106. Cori, G. T., and J. Larner: Action of amylo-1,6-glucosidase and phosphorylase on glycogen and amylopectin. J. of Biol. Chem. 188, 17–29 (1951).Google Scholar
  107. Daniellson, C. E.: Molecular weight of α-amylase. Nature (Lond.) 160, 899 (1947).CrossRefGoogle Scholar
  108. Deatherage, W. L., M. M. Mac Masters, M. L. Vineyard and R. P. Bear: A note on starch of high amylose content from corn with high starch content. Cereal Chem. 31, 50–52 (1954).Google Scholar
  109. Dillon, T., and P. O’Colla: The enzymic hydrolysis of 1,3-linked polyglucosans. Chem. a. Ind. 1951, 111.Google Scholar
  110. Doremus, G. L., F. A. Crenshaw and F. H. Thtjrber: Amylose content of sweetpotato starch. Cereal Chem. 28, 308–317 (1951).Google Scholar
  111. Doudoroff, M., H. A. Barker and W. Z. Hassid: Studies with bacterial sucrose phosphorylase. I. The mechanism of action of sucrose phosphorylase as a glucose-transferring enzyme (transglucosidase). J. of Biol. Chem. 168, 725–732 (1947).Google Scholar
  112. Dunn, G. M., H. H. Kramer and R. L. Whistler: Gene dosage effects on corn endosperm carbohydrates. Agron. J. 45, 101–104 (1953).CrossRefGoogle Scholar
  113. Dvonch, W., H. H. Kramer and R. L. Whistler: Polysaccharides of high-amylose corn. Cereal Chem. 28, 270–280 (1951).Google Scholar
  114. Dvqnch, W., and R. L. Whistler: Water-soluble polysaccharides of sweet corn. J. of Biol.. Chem. 181, 889–895 (1949).Google Scholar
  115. Ehrlich, V.L., and G. M. Btjckert: β- Amylase activities of barley, wheat and rye. Cereal Chem. 27, 423–437 (1950).Google Scholar
  116. Engel, C.: Distribution of amylase, proteinase, and esterase in resting cereals. Rec. Trav. chim. Pays-Bas 64, 318–320 (1945).CrossRefGoogle Scholar
  117. Englard, S., and T. P. Singer: Physicochemical studies on β-amylase. J. of Biol. Chem. 187, 213–219 (1950).Google Scholar
  118. Englard, S., S. Sorof and T. P. Singer: Intramolecular nature of the oxidative inactivation of crystalline β-amylase. J. of Biol. Chem. 189, 217–226 (1951).Google Scholar
  119. Feniksova, R. V.: Aspergillus molds as amylase producers. I. Amylolytic enzyme systems of two Aspergillus mold species. Mikrobiologiya 22, 28–37 (1953).Google Scholar
  120. Chem. Abstr. 47, 12466 (1953).Google Scholar
  121. Fischer, E.H., et P. Bernfeld: (i) Sur les enzymes amylolytiques. VIII. L’a-amylase de pancréas de porc cristallisée, (ii) IX. Stabilité et desactivation de l’α-amylase de pancréas de porc. Helvet. chim. Acta 31, (i) 1831–1839, (ii) 1839–1844 (1948).PubMedCrossRefGoogle Scholar
  122. Fischer, E.H., F. Duckert et P. Bernfeld: Sur les enzymes amylolytiques. XIV. Isolement et cristallisation de l’α-amylase de pancréas humain. Helvet. chim. Acta 33, 1060–1064 (1950).CrossRefGoogle Scholar
  123. Fischer, E. H. et C. H. Haselbach: Sur les enzymes amylolytiques. XVII. Contribution à l’étude de l’α-amylase de malt. Helvet. chim. Acta 34, 325–334 (1951).CrossRefGoogle Scholar
  124. Fischer, E. H. and H.M.Hilpert: Purification of potato phosphorylase. Experientia (Basel) 9, 176–177 (1953).CrossRefGoogle Scholar
  125. Fischer, E. H., et R. de Montmollin: Sur les enzymes amylolytiques. XVIII. Purification et cristallisation de l’α-amylase d’Aspergillus oryzae. Helvet. chim. Acta 34, 1987–1994 (1951a).CrossRefGoogle Scholar
  126. Sur les enzymes amylolytiques. XIX. Propriétés de l’α-amylase d’Aspergillus oryzae cristallisée. Helvet. chim. Acta 34, 1994–1999 (1951b).Google Scholar
  127. Fischer, E. H., et W. Settele: Recherches sur l’amidon. 54. Fractionnement chromatographique de l’amidon. Helvet. chim. Acta 34, 811–819 (1953).CrossRefGoogle Scholar
  128. Freeman, G. G., and R. H. Hopkins: The mechanism of the degradation of starch by amylases. I. Nature of the early fission products. II. Kinetics of the action of α- and β-amylases on starch, its components and partial degradation products. III. Mutarotation of fission products. Biochemic. J. 30, (I) 442–445, (II) 446–450, (III) 451–456 (1936).Google Scholar
  129. French, D.: Physical properties of starch. Chapt. VII, pps. 157–178, in Kerr 1950.Google Scholar
  130. French, D.. and D. W. Knapp: The maltase of Clostridium acetobutylicum. Its specificity range and mode of action. J. of Biol. Chem. 187, 463–471 (1950).Google Scholar
  131. French, D., D. W. Knapp and J. H. Pazur: Amylase action under unfavourable conditions of temperature or hydrogen ion concentration. J. Amer. Chem. Soc. 72, 1866–1867 (1950).CrossRefGoogle Scholar
  132. French, D., M. L. Levine, E. Norberg, P. Nordin, J. H. Pazur and G. M. Wild: Studies on the Schardinger dextrins. VII. Cosubstrate specificity in coupling reactions of Macerans amylase. J. Amer. Chem. Soc. 76, 2387–2390 (1954).CrossRefGoogle Scholar
  133. French, D., M. L. Levine, J. H. Pazur and E. Norberg: Studies on the Schardinger dextrins. IV. The action of soy bean β-amylase on amyloheptaose. J. Amer. Chem. Soc. 72, 1746–1748 (1950).CrossRefGoogle Scholar
  134. French, D., and G.M. Wild: Primer specificity of potato phosphorylase. J. Amer. Chem. Soc. 75, 4990–4992 (1953).Google Scholar
  135. Freudenberg, K, u. H. Boppel: Die Lage der Verzweigungsstelle in der Stärke. Ber. dtsch. chem. Ges. B 73, 609–620 (1940).CrossRefGoogle Scholar
  136. Freudenberg, K., K. Friedrich, I. Bumann u. K. Soff: Über Cellulose und Stärke. Liebigs Ann. 494, 41–62 (1932).CrossRefGoogle Scholar
  137. Freudenberg, K., u. W. Kuhn: Die Hydrolyse der Polysaccharide. Ber. dtsch. chem. Ges. B 65, 484–487 (1932).CrossRefGoogle Scholar
  138. Frey-Wyssling, A.: Der Aufbau der pflanzlichen Zellwände. Protoplasma (Berl.) 25, 261–300 (1936).CrossRefGoogle Scholar
  139. Feinbau der Membran gequollener Stärkekörner. Experientia (Basel) 8, 101–102 (1952).Google Scholar
  140. Gates, R. L., and R. M. Sandstedt: Effect of a cationic detergent on the digestion of a raw cornstarch in vitro. Science (Lancaster, Pa.) 116, 482–483 (1952).Google Scholar
  141. A method of determining enzymic digestion of raw starch. Cereal Chem. 30, 413–419 (1953).Google Scholar
  142. Geddes, W. F.: The amylases of wheat and their significance in milling and baking technology. Adv. Enzymol. 6, 415–468 (1946).Google Scholar
  143. Ghosh, J. J.: Studies on the dextrinase, amylase, protease and lipase activities of the rice-inhabiting fungi. Indian J. Phvsiol. a. Allied Sci. 6, 28–42 (1952). Chem. Abstr. 46, 10282 (1952).Google Scholar
  144. Gibbons, G. C., et R. A. Boissonnas: Recherches sur l’amidon. 48. Nature de la liaison d’embranchement du glvcogène et de l’amylopectine. Helvet. chim. Acta 33, 1477–1481 (1950).CrossRefGoogle Scholar
  145. Gilbert, G. A., C. T. Greenwood and F. J. Hybart: An evaluation of methods of using stearic acid and cellulose for the purification of amylopectin. J. Chem. Soc. Lond. 1954, 4454–4457.Google Scholar
  146. Gilbert, G. A., and J. V. R. Marriott: Starch-iodine complexes. I. Trans. Faraday Soc. 44, 84–93 (1948).CrossRefGoogle Scholar
  147. Gilbert, G. A., and A. D. Patrick: Enzymes of the potato concerned in the synthesis of starch. I. Separation and crystallization of Q-enzyme. Biochemie. J. 51, 181–186 (1952).Google Scholar
  148. Gilbert, G. A., and A. J. Swallow: The influence of ions on the activity of Q-enzyme. J. Chem. Soc. Lond. 1949, 2849–2852.Google Scholar
  149. Gottschalk, A.: α-d-Glucosidases. The Enzymes, ed. by Sumner and Myrbäck vol. 1, pps. 551–582. New York: Academic Press 1950a.Google Scholar
  150. Principles underlying specificity in the domain of carbohydrates. Adv. Carbohydrate Chem. 5, 49–78 (1950b).Google Scholar
  151. Grangaard, D. H., E. K. Gladding and C. B. Purves: Estimation of the dialdehyde type of oxidation in oxystarches and oxycelluloses. Paper Trade J. 115, 41–48 (1942).Google Scholar
  152. Green, D. E., and P. K. Stumpf: Starch phosphorylase of potato. J. of Biol. Chem. 142, 355–366 (1942).Google Scholar
  153. Greenwood, C. T.: The size and shape of some polysaccharide molecules. Adv. Carbohydrate Chem. 7, 289–332 (1952).CrossRefGoogle Scholar
  154. Greenwood, C. T., and J. S. M. Robertson: Physicochemical studies on starches. I. Characterisation of the starch present in the seeds of the rubber tree, Hevea brasiliensis. J. Chem. Soc. Lond. 1954, 3769–3778.Google Scholar
  155. Guilbot, A., et G. Levavasseur: Structure submicroscopique de l’amidon. I. Mise en évidence, au microscope électronique, de différents éléments structuraux, après dispersion aqueuse du grain à diverses températures. C. r. Acad. Sci. Paris 239, 728–730 (1954).PubMedGoogle Scholar
  156. Halsall, T. G., E. L. Hirst, L. Hough and J. K. N. Jones: The action of β-amylase on amylopectin and glycogen. J. Chem. Soc. Lond. 1949, 3201–3207.Google Scholar
  157. Halsall, T. G., E.L. Hirst and J.K.N. Jones: Oxidation of carbohydrates by the periodate ion. J. Chem. Soc. Lond. 1947a, 1427–1432.Google Scholar
  158. The structure of glycogen. Ratio of non-terminal to terminal glucose residues. J. Chem. Soc. Lond. 1947b, 1399–1400.Google Scholar
  159. Halsall, T. G., E. L. Hirst, J. K. N. Jones and A. Roudier: Structure of starch: mode of attachment of the side-chains in amylopectin. Nature (Lond.) 160, 899–900 (1947).CrossRefGoogle Scholar
  160. Halsall, T. G., E. L. Hirst, J. K. N. Jones and F. W. Sansome: Amylose content of the starch present in the growing potato tuber. Biochemic. J. 43, 70–72 (1948).Google Scholar
  161. Hamilton, J.K.: The constitution of starch. Dissertation Abstr. 14, 461 (1954).Google Scholar
  162. Hanes, C. S.: The reversible formation of starch from glucose 1-phosphate catalysed by potato phosphorylase. Proc. Roy. Soc. Lond., Ser. B 129, 174–208 (1940).CrossRefGoogle Scholar
  163. Hanes, C. S., and M. Cattle: Starch-iodine coloration as an index of differential degradation by the amylases. Proc. Roy. Soc. Lond., Ser. B 125, 387–414 (1938).CrossRefGoogle Scholar
  164. Hanrahan, V.M., and M. L. Caldwell: I. A study of the action of taka amylase. II. Additional studies of the properties of taka amylase. J. Amer. Chem. Soc. 75, (I) 2191–2197, (II) 4030–4034 (1953).CrossRefGoogle Scholar
  165. Hassid, W. Z.: Starch. Organic Chemistry, edited by H. Gilman, vol. 4, pps. 901–990. New York: Wiley 1953.Google Scholar
  166. Hassid, W. Z., and M. Doudoroff: Enzymatic synthesis of sucrose and other disaccharides. Adv. Carbohydrate Chem. 5, 29–48 (1950).CrossRefGoogle Scholar
  167. Hassid, W. Z., M. Doudoroff and H.A. Barker: Phosphorylases—phosphorolysis and synthesis of saccharides. The Enzymes, ed. by Sumner and Myrbäck, vol. 1, pps. 1014–1039. New York: Academic Press 1950.Google Scholar
  168. Hassid, W. Z., and R. M. Mc Cready: Molecular constitution of glycogen and starch from the seed of sweet corn (Zea mays). J. Amer. Chem. Soc. 63, 1632–1635 (1941a).CrossRefGoogle Scholar
  169. The molecular constitution of enzymatically synthesized starch. J. Amer. Chem. Soc. 63, 2171–2173 (1941b).Google Scholar
  170. The molecular constitution of amylose and amylopectin of potato starch. J. Amer. Chem. Soc. 65, 1157–1161 (1943).Google Scholar
  171. Haworth, W. N.: Molecular structure of cellulose and of amylose. Nature (Lond.) 129, 365 (1932).CrossRefGoogle Scholar
  172. Haworth, W. N., R. L. Heath and S. Peat: Constitution of the starch synthesised in vitro by the agency of potato phosphorylase. J. Chem. Soc. Lond. 1942, 55–58.Google Scholar
  173. Haworth, W. N., E. L. Hirst and F. A. Isherwood: Polysaccharides. XXIII. Determination of the chain length of glycogen. J. Chem. Soc. Lond. 1937, 577–581.Google Scholar
  174. Haworth, W. N., E. L. Hirst, H. Kitchen and S. Peat: Polysaccharides. XXV. α-Amylodextrin. J. Chem. Soc. Lond. 1937, 791–795.Google Scholar
  175. Haworth, W. N., E. L. Hirst and F. Smith: Polysaccharides. XXXVIII. The constitution of glycogen from fish liver and fish muscle. J. Chem. Soc. Lond. 1939, 1914–1922.Google Scholar
  176. Haworth, W. N., E. L. Hirst and J.I. Webb: Polysaccharides. II. The acetylation and methylation of starch. J. Chem. Soc. Lond. 1928, 2681–2690.Google Scholar
  177. Haworth, W. N., H. Kitchen and S. Peat: The amylolytic degradation of starch. J. Chem. Soc. Lond. 1943, 619–625.Google Scholar
  178. Haworth, W. N., and S. Peat: The constitution of the disaccharides. XI. Maltose. J. Chem. Soc. Lond. 1926, 3094–3101.Google Scholar
  179. Head, F. S. H.: Effect of daylight on the periodate oxidation of β-methyl glucoside, β-methyl cellobioside, and cellulose. J. Textile Inst. 44, T209–T223 (1953).CrossRefGoogle Scholar
  180. Hehre, E. J.: Enzymic synthesis of polysaccharides. A biological type of polymerization. Adv. Enzymol. 11, 297–337 (1951).Google Scholar
  181. Polysaccharide synthesis from disaccharides. IV. Amylomaltase. Methods in Enzymology, vol. 1, pps. 189–192. New York: Academic Press 1955.Google Scholar
  182. Hellman, N. N., B. Fairchild and F. R. Senti: The bread staling problem. Molecular organization of starch upon aging of concentrated starch gels at various moisture levels. Cereal Chem. 31, 495–505 (1954).Google Scholar
  183. Hess, K., u. B. Krajnc: Mittlg. über Stärke. X. Die Endgruppenbestimmung bei den Stärkekomponenten. Ber. dtsch. chem. Ges. 73, 976–983 (1940).CrossRefGoogle Scholar
  184. Hess, K., u. E. Steurer: Mittlg, über Stärke. XII. Vergleich von Endgruppengehalt, Viscosität und osmotischem Druck bei Stärke und ihren Komponenten. Ber. dtsch. chem. Ges. 73, 1076–1079, 1317 (1940).CrossRefGoogle Scholar
  185. Hestrin, S.: Enzymic synthesis of starch. Brewer’s Digest 23, No 1, 1–4 (1948).Google Scholar
  186. Action pattern of crystalline muscle phosphorylase. J. of Biol. Chem. 179, 943–955 (1949).Google Scholar
  187. Higginbotham, R. S., and G. A. Morrison: The fractionation of starch. I. The estimation of amylose in the presence of amylopectin. J. Textile Inst. 40, T201–T207 (1949a).CrossRefGoogle Scholar
  188. The fractionation of starch. II. The separation of amylose and amylopectin. J. Textile Inst. 40, T 208-T 219 (1949b).Google Scholar
  189. Hilbert, G. E., and M. M. Mac Masters: Pea starch, a starch of high amylose content. J. of Biol. Chem. 162, 229–238 (1946).Google Scholar
  190. Hirst, E. L., L. Hough and J. K. N. Jones: Quantitative analysis of mixtures of sugars by the method of partition chromatography. II. The separation and determination of methylated aldoses. J. Chem. Soc. Lond. 1949, 928–933.Google Scholar
  191. Hirst, E. L., and J. K. N. Jones: The analysis of plant gums and mucilages. Modern Methods of Plant Analysis, ed. by Paech and Tracey vol. II, pps. 275–294. Berlin: Springer 1955.CrossRefGoogle Scholar
  192. Hirst, E. L., J. K. N. Jones and A. J.Roudier: Structure of a corn starch. J. Chem. Soc. Lond. 1948, 1779–1783.Google Scholar
  193. Hirst, E. L., D. I. Mc Gilvray and E. G. V. Percival: Studies on fructosans. I. Inulin from dahlia tubers. J. Chem. Soc. Lond. 1950, 1297–1302.Google Scholar
  194. Hirst, E. L., and D. J. Manners: Multiple-branching in amylopectin. Chem. a. Ind. 1954, 224–225.Google Scholar
  195. Hixon, R. M., and B. Brimhall: The waxy cereals and starches which stain red with iodine, Chapt. 11, pps. 252–290, in Radley 1953.Google Scholar
  196. Hobson, P. N., S. J. Pirt, W. J. Whelan and S. Peat: The enzymic synthesis and degradation of starch. XIII. Improved methods for the fractionation of potato starch. J. Chem. Soc. Lond. 1951, 801–803.Google Scholar
  197. Hobson, P. N., W. J. Whelan and S. Peat: The enzymic synthesis and degradation of starch. X. The phosphorylase and Q-enzyme of broad bean. The Q-enzyme of wrinkled pea. J. Chem. Soc. Lond. 1950, 3566–3573.Google Scholar
  198. The enzymic synthesis and degradation of starch. XII. The mechanism of synthesis of amylopectin. J. Chem. Soc. Lond. 1951a, 596–598.Google Scholar
  199. The enzymic synthesis and degradation of starch. XIV. R-Enzyme. J. Chem. Soc. Lond. 1951b, 1451–1459.Google Scholar
  200. Hodge, J. E., S. A. Karjala and G. E. Hilbert: Methylation and ethylation of corn starch, amylose and amylopectin in liquid ammonia. J. Amer. Chem. Soc. 73, 3312–3316 (1951).CrossRefGoogle Scholar
  201. Hodge, J. E., E. M. Montgomery and G. E. Hilbert: Hydrolysis of the amylopectins from various starches with β-amylase. Cereal Chem. 25, 19–30 (1948).Google Scholar
  202. Hopkins, R. H.: The actions of the amylases. Adv. Enzymol. 6, 389–414 (1946).Google Scholar
  203. Structure of starch. Nature (Lond.) 171, 429 (1953).Google Scholar
  204. The action and properties of β-amylase: recent developments. Waller-stein Labor. Commun. 59, 299–316 (1954).Google Scholar
  205. Hopkins, R. H., and R. Bird: The Z-enzyme in amylolysis. Nature (Lond.) 172, 492–494 (1953).CrossRefGoogle Scholar
  206. The action of some α-amylases on amylose. Biochemic. J. 56, 86–99 (1954).Google Scholar
  207. Hopkins, R. H., D. E. Dolby and E. G. Stopher: Some comparisons between a bacterial amylase and malt α-amylase. II. The dextrins produced by the action of malt α-amylase and bacterial amylase on potato starch. J. Inst. Brewing 48, 174–177 (1942).Google Scholar
  208. Hopkins, R. H., and B. Jelinek: The mechanism of β-amylase action. 1. “Multichain” action on amylose. Biochemic. J. 56, 136–140 (1954).Google Scholar
  209. Hopkins, R. H., and F. C. B. Krause: Biochemistry applied to malting and brewing. London: G. Allen & Unwin 1947.Google Scholar
  210. Hopkins, R. H., and D. Kulka: Some comparisons between a bacterial amylase and malt α-amylase. I. The kinetics of starch saccharification by the two enzymes. J. Inst. Brewing 48, 170–174 (1942).Google Scholar
  211. Hough, L., and J. K. N. Jones: The chemical evidence for the structure of starch, Chapt. 3, pps. 25–57, in Radley 1953.Google Scholar
  212. Huebner, C. F., S. R. Ames and E. C. Bubl: Periodate oxidation of certain active methylene groups. J. Amer. Chem. Soc. 68, 1621–1628 (1946).CrossRefGoogle Scholar
  213. Husemann, E.: Über natürliche und synthetische Amylose. Die Stärke 6, 2–5 (1954).CrossRefGoogle Scholar
  214. Husemann, E., u. H. Bartl: Über die Größe und Gestalt der Amylosemoleküle. Makromolekulare Chem. 10, 183–184 (1953).CrossRefGoogle Scholar
  215. Husemann, E., and E. Lindemann: Recent studies of the carbohvdrate specificity of α-, β-, and macerans amvlases and phosphorylase. Die Stärke 6, 141–148 (1954). Chem. Abstr. 48, 13742 (1954).CrossRefGoogle Scholar
  216. Illingworth, B., J. Larner and G. T. Cori: Structure of glycogens and amylopectins. I. Enzymatic determination of chain length. J. of Biol. Chem. 199, 631–640 (1952).Google Scholar
  217. Ingold, C. K.: Structure and mechanism in organic chemistry. London: G. Bell & Sons Ltd. 1953.Google Scholar
  218. Isbell, H. S.: Determination of carbonyl groups by reaction with radioactive cyanide, and a simple means for estimation of molecular weight in polysaccharides. Science (Lancaster, Pa.) 113, 532–533 (1951).Google Scholar
  219. Isbell, H. S., C. F. Snyder, N. B. Holt and M. R. Dryden: Determination of molecular weights of dextrans by means of alkaline copper reagents. Bur. Standards J. Res. 50, 81–86 (1953).Google Scholar
  220. Jackson, E. L.: Periodic acid oxidation. Organic Reactions, vol. II, pps. 341–375. New York: Wiley 1944.Google Scholar
  221. Jackson, E. L., and C. S. Hudson: Application of the cleavage type of oxidation by periodic acid to starch and cellulose. J. Amer. Chem. Soc. 59, 2049–2050 (1937).CrossRefGoogle Scholar
  222. Karrer, P., u. C. Nägeli: Polysaccharide. VI. Die Konstitution der Stärke und des Glykogens. Helvet. chim. Acta 4, 263–269 (1921).CrossRefGoogle Scholar
  223. Katz, J., and W. Z. Hassid: Arsenolysis of amylose and amylopectin. Arch. of Biochem. 30, 272–281 (1951).Google Scholar
  224. Katz, J. R., u. T. B. van Itallie: Abhandlungen zur physikalischen Chemie der Stärke und der Brotbereitung. V. Alle Stärkearten haben das gleiche Retrogradationsspektrum. Z. physik. Chem., Abt. A 150, 90–99 (1930).Google Scholar
  225. Kenner, J. W., and G. N. Richards: Alkaline degradation of amylose. Chem. a. Ind. 1954, 1483–1484.Google Scholar
  226. Kerr, R. W.: The heterogeneity of amylose and amylopectin, I. Arch. of Biochem. 7, 377–392 (1945).Google Scholar
  227. Action of β-amylase on amvlose. Nature (Lond.) 164, 757–759 (1949).Google Scholar
  228. Chemistry and industry of starch. 2nd Edition. New York: Academic Press 1950.Google Scholar
  229. Kerr, R. W., and F. C. Cleveland: The molecular weight of the β-amylase limit dextrin from corn starch. J. Amer. Chem. Soc. 71, 3455–3457 (1949).CrossRefGoogle Scholar
  230. The action of crystalline β-amylase on corn crystalline amylose. J. Amer. Chem. Soc. 73, 2421–2424 (1951).Google Scholar
  231. The structure of amyloses. J. Amer. Chem. Soc. 74, 4036–4039 (1952).Google Scholar
  232. Kerr, R, W., F. C. Cleveland and W. J. Katzbeck: The molecular magnitude of amylopectin. J. Amer. Chem. Soc. 73, 111–117 (1951a).CrossRefGoogle Scholar
  233. The action of amyloglucosidase on amylose and amylopectin. J. Amer. Chem. Soc. 73, 3916–3921 (1951b).Google Scholar
  234. Kinell, P.-O., and B. G. Rånby: Ultracentrifugal sedimentation of polymolecular substances. Adv. Colloid Sci. 3, 161–218 (1950).Google Scholar
  235. Klimovskiǐ, D. N., and V. I. Rodzevich: Hydrolysis of starch by amylase from different sources. Biokhimiya 14, 26–34 (1949). Chem. Abstr. 43, 5061 (1949).Google Scholar
  236. Kneen, E.: The amylases. Properties and production, Chapt. XV, pps. 407–441, in Kerr 1950.Google Scholar
  237. Kneen, E., O.C. Beckord and R.M. Sandstedt: The starch degrading properties of barley malts. Cereal Chem. 18, 741–754 (1941).Google Scholar
  238. Kneen, E., and R. M. Sandstedt: Amylase inhibitor from certain cereals. J. Amer. Chem. Soc. 65, 1247 (1943).CrossRefGoogle Scholar
  239. Distribution and general properties of an amylase inhibitor in cereals. Arch. of Biochem. 9, 235–247 (1946).Google Scholar
  240. Cited by Miller and Kneen 1947.Google Scholar
  241. Kneen, E., R.M. Sandstedt and C. M. Hollenbeck: The differential stability of the malt amylasesseparation of the alpha and beta components. Cereal Chem. 20, 399–423 (1943).Google Scholar
  242. Kneen, E., and J. M. Spoerl: The limit-dextrinase activity of barley malts. Proc. Amer. Soc. Brew. Chem. 1948, 20–27.Google Scholar
  243. Koshland, D. E.: Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 28, 416–436 (1953).CrossRefGoogle Scholar
  244. Group transfer as an enzymic substitution mechanism. Mechanism of Enzyme Action, pps. 608–641. Baltimore: Johns Hopkins University Press 1954.Google Scholar
  245. Koshland, D. E., and S. S. Stein: Correlation of bond breaking with enzyme specificity. Cleavage point of invertase. J. of Biol. Chem. 208, 139–148 (1954).Google Scholar
  246. Kramer, H. H., and R. L. Whistler: Quantitative effects of certain genes on the amylose content of corn endosperm starch. Agron. J. 41, 409–411 (1949).CrossRefGoogle Scholar
  247. Kreger, D. R.: Configuration and packing of the chain molecules of native starch as derived from X-ray diffraction of part of a single starch grain. Arch. of Biochem. a. Biophysics 6, 406–425 (1951).Google Scholar
  248. Kuhn, R.: Der Wirkungsmechanismus der Amylasen; ein Beitrag zum Konfigurationsproblem der Stärke. Liebigs Ann. 443, 1–71 (1925).Google Scholar
  249. Kung, J.-F., V. M. Hanrahan and M. L. Caldwell: A comparison of the action of several α-amylases upon a linear fraction from corn starch. J. Amer. Chem. Soc. 75, 5548–5554 (1953).CrossRefGoogle Scholar
  250. Lambert, M., and A. C. Neish: Rapid method for estimation of glycerol in fermentation solutions. Canad. J. Res. B 28, 83–89 (1950).CrossRefGoogle Scholar
  251. Lampe, L.: A microchemical and morphological study of the developing endosperm in maize. Bot. Gaz. 91, 337–376 (1931).CrossRefGoogle Scholar
  252. Lampitt, L. H., C. H. Fuller and N. Goldenberg: The fractionation of wheat starch. I. The process of grinding. J. Soc. Chem. Ind., Lond. 60, 1–6 (1941).CrossRefGoogle Scholar
  253. Lansky, S., M. Kooi and T. J. Schoch: Properties of the fractions and linear subfractions from various starches. J. Amer. Chem. Soc. 71, 4066–4075 (1949).CrossRefGoogle Scholar
  254. Larner, J.: The action of branching enzymes on the outer chains of glycogen. J. of Biol. Chem. 202, 491–503 (1953).Google Scholar
  255. Larner, J., B. Illingworth, G. T. Cori and C. F. Cori: Structure of glycogens and amylopectins. II. Analysis by stepwise enzymatic degradation. J. of Biol. Chem. 199, 641–651 (1952).Google Scholar
  256. Le Corvaisier, H.: Electrolytes as constituents of starches and their role in the hvdrolysis of starch by amylases of barley and malt. Bull. Soc. Chim. biol. (Paris) 30, 202–213 (1948).Google Scholar
  257. The amylases and phosphatases of malt. Bull. Soc. chim. Fr. 265–267 (1950). Chem. Abstr. 44, 9115 (1950). Phosphatases in the hydrolysis of starch paste. Bull. Soc. Chim. biol. Paris 32, 333–339 (1950). Chem. Abstr. 44, 10361 (1950).Google Scholar
  258. Levine, M., J.F.Foster and R, M. Hixon: Structure of the dextrins isolated from corn sirup. J. Amer. Chem. Soc. 64, 2331–2337 (1942).CrossRefGoogle Scholar
  259. Lindberg, B.: The question of furanosidic bonds in starch. Acta chem. scand. (Copenh.) 7, 237–238 (1953).CrossRefGoogle Scholar
  260. Lindberg, B., and B. Wickberg: Separation of methylated sugars on carbon columns. Acta chem. scand. (Copenh.) 8, 569–578 (1954).CrossRefGoogle Scholar
  261. Linderstrøm- Lang, K., u. C. Engel: Über die Verteilung der Amylase in den äußeren Schichten des Gerstenkornes. Enzymologia (Den Haag) 3, 138–146 (1937).Google Scholar
  262. C. r. Labor. Carlsberg, Sér. chim. 21, 243–258 (1938).Google Scholar
  263. Lowry, M. T., G. S. Bobbins, W. J. Olson and A. D. Dickson: Limit dextrinase activity of malts from ten barley varieties grown at ten stations during four seasons. Proc. Amer. Soc. Brew. Chem. 1952, 21–25. Chem. Abstr. 47, 8198 (1953).Google Scholar
  264. Mc Cready, R. M., J. Guggolz, V. Silviera and H. S. Owens: Determination of starch and amylose in vegetables. Analyt. Chem. 22, 1156–1158 (1950).CrossRefGoogle Scholar
  265. Mc Cready, R. M., and W. Z. Hassid: Separation and quantitative estimation of amylose and amylopectin in potato starch. J. Amer. Chem. Soc. 65, 1154–1157 (1943).CrossRefGoogle Scholar
  266. Mac Masters, M. M.: The return of birefringence to gelatinized starch granules. Cereal Chem. 30, 63–65 (1953).Google Scholar
  267. Mac William, I. C., and E. G. V. Percival: The constitution of barley starch. J. Chem. Soc. Lond. 1951, 2259–2266.Google Scholar
  268. Manners, D. J.: The enzymic degradation of starch and glycogen. Annu. Rep. Progr. Chem. 50, 288–301 (1953).Google Scholar
  269. α-l:4-Glucosans. II. The molecular structure of the liver glycogen from a case of von Gierke’s disease. J. Chem. Soc. Lond. 1954, 3527–3530.Google Scholar
  270. The enzymic degradation of polysaccharides. Quart. Rev. Chem. Soc, Lond. 9, 73–99 (1955).Google Scholar
  271. Manners, D. J., and Kein Maung: Observations on the specificity of yeast isoamylase. Chem. a. Ind. 1955, 950–951.Google Scholar
  272. Maruo, B., and T.Kobayashi: Enzymic scission of the branch links in amylo pectin. Nature (Lond.) 167, 606–607 (1951a).CrossRefGoogle Scholar
  273. The enzymic formation and degradation of starch. VII. The relation between amylosynthease and amyloglucosidase. J. Agric. Chem. Soc. Jap. 24, 309–313 (1951b).Google Scholar
  274. Melville, R.: The nutritive value of nuts. Chem. a. Ind. 1947, 304–306.Google Scholar
  275. Meyer, A.: Über Stärkekörner, welche sich mit Jod rot färben. Ber. dtsch. bot. Ges. 4, 337–362 (1886).Google Scholar
  276. Untersuchungen über die Stärkekörner. Jena: Gustav Fischer 1895.Google Scholar
  277. Meyer, K. H.: Die Endgruppenbestimmung bei den Stärkekomponenten. Bemerkung zu der gleichnamigen Mitteilung von K. Hess und B. Krajnc. Ber. dtsch. chem. Ges. 73, 1298–1299 (1940).CrossRefGoogle Scholar
  278. Recent developments in starch chemistry. Adv. Colloid Sci. 1, 143–182 (1942).Google Scholar
  279. The chemistry of glycogen. Adv. Enzymol. 3, 109–135 (1943).Google Scholar
  280. The past and present of starch chemistry. Experientia (Basel) 8, 405–420 (1952).Google Scholar
  281. Meyer, K. H., et P. Bernfeld: (i) Recherches sur l’amidon. V. L’amylopectine, (ii) VII. Sur la structure fine du grain d’amidon et sur les phénomènes du gonflement. Helvet. chim. Acta 23, (i) 875–885 (ii) 890–897 (1940).CrossRefGoogle Scholar
  282. Recherches sur l’amidon. XIX. Sur la dégradation de l’amylose par l’α-amylase. Helvet. chim. Acta 24, 359 E–369 E (1941).Google Scholar
  283. Meyer, K. H., P. Bernfeld, R. A. Boissonnas, P. Gürtler and G. Noelting: Starch solutions and pastes and their molecular interpretation. J. Physic. Chem. 53, 319–334 (1949).CrossRefGoogle Scholar
  284. Meyer, K. H., P. Bernfeld, P. Rathgeb et P. Gürtler: Recherches sur l’amidon. 4I. La degradation de l’amylopectine par la β-amylase. Helvet. chim. Acta 31, 1536–1540 (1948).PubMedCrossRefGoogle Scholar
  285. Meyer, K. H., W. Brentano et P. Bernfeld: Recherches sur l’amidon. II. Sur la nonhomogénéité de l’amidon. Helvet. chim. Acta 23, 845–853 (1940).CrossRefGoogle Scholar
  286. Meyer, K. H., F. Duckert et E. H. Fischer: Sur les enzymes amylolytiques. XIII. Sur la liquéfaction de l’empois d’amidon par l’α-amylase humaine. Helvet. chim. Acta 33, 207–210 (1950).CrossRefGoogle Scholar
  287. Meyer, K. H., E. H. Fischer u. P. Bernfeld: Sur les enzymes amylolytiques. I. L’isolement de l’α-amylase de pancréas. Helvet. chim. Acta 30, 64–78 (1947).PubMedCrossRefGoogle Scholar
  288. Meyer, K. H., E.H. Fischer, A. Staub et P. Bernfeld: Sur les enzymes amylolytiques. X. Isolement et cristallisation de l’α-amylase de salive humain. Helvet. chim. Acta 31, 2158–2164 (1948).PubMedCrossRefGoogle Scholar
  289. Meyer, K. H., et M. Fuld: Recherches sur l’amidon. XII. L’arrangement des restes de glucose dans le glycogene. Helvet. chim. Acta 24, 375–378 (1941).CrossRefGoogle Scholar
  290. Meyer, K. H., M. Fuld et P. Bernfeld: Purification et cristallisation de l’α-amylase de bactérie. Experientia (Basel) 3, 411–412 (1947).CrossRefGoogle Scholar
  291. Meyer, K. H., et G. C. Gibbons: Recherches sur l’amidon. 47. Fractionnement de l’amylopectine. Helvet. chim. Acta 33, 213–217 (1950a).CrossRefGoogle Scholar
  292. Recherches sur l’amidon. 46. Purification de l’amylopectine. Helvet. chim. Acta 33, 210–213 (1950b).Google Scholar
  293. The present status of starch chemistry. Adv. Enzymol. 12, 341–377 (1951).Google Scholar
  294. Meyer, K. H., et W. F. Gonon: Recherches sur l’amidon. 49. Dosage de produits d’hydrolyse de l’amidon par fermentation. Helvet. chim. Acta 34, 290–294 (1951a).CrossRefGoogle Scholar
  295. Recherches sur l’amidon. 50. La degradation de l’amylose par les α-amyJases. Helvet. chim. Acta 34, 294–307 (1951b).Google Scholar
  296. Recherches sur l’amidon. 51. La degradation de l’amylopectin par les α-amylases. Helvet. chim. Acta 34, 308–316 (1951c).Google Scholar
  297. Meyer, K. H., R Gürtler and P. Bernfeld: Structure of amylopectin. Nature (Loncl.) 160, 900–901 (1947).CrossRefGoogle Scholar
  298. Meyer, K. H., et P. Heinrich: Recherches sur l’amidon. XXIII. La composition de l’amidon de feuilles, de germes et de tubercules de pommes de terre. Helvet. chim. Acta 25, 1038–1046 (1942a).CrossRefGoogle Scholar
  299. Recherches sur l’amidon. XXIV. La composition de quelques espèces d’amidon. Helvet. chim. Acta 25, 1639–1650 (1942b).Google Scholar
  300. Meyer, K. H., u. R. Menzi: Recherches sur l’amidon. 53. Sur la structure fine du grain d’amidon. Helvet. chim. Acta 36, 702–708 (1953).CrossRefGoogle Scholar
  301. Meyer, K. H., G. Noelting et P. Bernfeld: Recherches sur l’amidon. XXXVII. Détermination du poids moléculaire des polysaccharides naturels par dosage colorimetrique. Helvet. chim. Acta 31, 103–105 (1948).PubMedCrossRefGoogle Scholar
  302. Meyer, K. H., et P. Rathgeb: Recherches sur l’amidon. 42. Dosages des acides formés lors de l’oxydation des polyols par le periodate. Helvet. chim. Acta 31, 1540–1545 (1948a).CrossRefGoogle Scholar
  303. Recherches sur l’amidon. 43. Le dosage des groups terminaux de l’amidon et du glycogène. Helvet. chim. Acta 31, 1545–1548 (1948b).Google Scholar
  304. Recherches sur l’amidon. 45. Sur le dosage des groupes terminaux de polysaccharides et d’oligosaccharides au moyen de periodate. Helvet. chim. Acta 32, 1102–1107 (1949).Google Scholar
  305. Meyer, K. H., et W. Settele: Recheres sur l’amidon. 52. Sur l’inhomogénéité des amylopectines de tapioca et de waxymaize. Helvet. chim. Acta 36, 197–204 (1953).CrossRefGoogle Scholar
  306. Meyer, K. H., P.-F. Spahr et E.H.Fischer: Sur les enzymes amylolytiques. 22. Purification, cristallisation et propriétés de la β-amylase de blé. Helvet. chim. Acta 36, 1924–1936 (1953).CrossRefGoogle Scholar
  307. Meyer, K. H., R. M. Weil et E. H. Fischer: Sur les enzymes amylolytiques. 20. Dégradation β-amylatique et arsénolytique de l’amylopectine. Helvet. chim. Acta 35, 247–257 (1952).CrossRefGoogle Scholar
  308. Meyer, K. H., M. Wertheim et P. Bernfeld: Recherches sur l’amidon. IV. Méthylation et détermination des groupes terminaux d’amylose et d’amylopectine de mais. Helvet. chim. Acta 23, 865–875 (1940).CrossRefGoogle Scholar
  309. Recherches sur l’amidon. XL Sur la dextrine residuelle de l’amidon de mais (erythrogranulose). Helvet. chim. Acta 24, 212–216 (1941).Google Scholar
  310. Meyer, K. H., A. J. A. van der Wyk et C.-P. Feng: Recherches sur l’amidon. 54. Sur la determination du poids moleculaire des polysaccharides. Helvet. chim. Acta 37, 1619–1627 (1954).CrossRefGoogle Scholar
  311. Michell, J. H., and C. B. Purves: Probable structure of a crystalline substance derived from starches oxidized with periodate. J. Amer. Chem. Soc. 64, 585–589 (1942a).CrossRefGoogle Scholar
  312. Reaction between periodate-oxidized starch and methanol containing hydrogen chloride. J. Amer. Chem. Soc. 64, 589–593 (1942b).Google Scholar
  313. Militzer, W., C. Ikeda and E. Kneen: The preparation and properties of an amylase inhibitor from wheat. Cereal Chem. 9, 309–320 (1946a).Google Scholar
  314. The mode of action of an amylase inhibitor from wheat. Cereal Chem. 9, 321–329 (1946b).Google Scholar
  315. Miller, B. S., and E. Kneen: The amylase inhibitor of Leoti sorghum. Arch. of Biochem. 15, 251–264 (1947).Google Scholar
  316. Monod, J., et A. M. Torriani: L’amylomaltase de l’Escherichia coli. Ann. Inst. Pasteur 78, 65–77 (1950).Google Scholar
  317. Montgomery, E. M., F. B. Weakley and G. E. Hilbert: Isolation of 6-[α-d-glucopyranosyl]-d-glucose (isomaltose) from enzymic hydrolysates of starch. J. Amer. Chem. Soc. 71, 1682–1687 (1949).CrossRefGoogle Scholar
  318. Morris, D. L., and C.T.Morris: Glycogen in the seed of Zea Mays, variety Golden Bantam. J. of Biol. Chem. 130, 535–544 (1939).Google Scholar
  319. Mould, D. L., and R. L. M. Synge: Separations of polysaccharides related to starch by electrokinetic ultrafiltrat ion in collodion membranes. Biochemic. J. 58, 571–585 (1954).Google Scholar
  320. Mutts, J.: Studies on salivary amylase with special reference to the interaction with chloride ions. C. r. Labor. Carlsberg 28, 317–334 (1953).Google Scholar
  321. The amino acid composition of human salivary amylase. J. Amer. Chem. Soc. 76, 5163–5165 (1954).Google Scholar
  322. Myrbäck, K.: Über Verbindungen einiger Enzyme mit inaktivierenden Stoffen. II. Hoppe-Seylers Z. 159, 1–84 (1926).CrossRefGoogle Scholar
  323. Mechanism of the malt α-amylase action. Arch. of Biochem. 14, 53–56 (1947).Google Scholar
  324. Products of the enzymic degradation of starch and glycogen. Adv. Carbohydrate Chem. 3, 251–310 (1948).Google Scholar
  325. On the amylase-substrate compounds. Ark. Kemi (Stockh.) 2, 417–422 (1950).Google Scholar
  326. Über die Natur der Stärkegrenzdextrine. I. Die theoretisch möglichen Grenzdextrine. Ark. Kemi (Stockh.) 4, 433–441 (1952).Google Scholar
  327. Starch degradation by salivary amylase. II. Ark. Kemi (Stockh.) 7, 53–59 (1954).Google Scholar
  328. Myrbäck, K., u. E. Leissner: Über die Hydrolyse von Maltohexaose und die dabei entstehenden Produkte, vornehmlich die Maltotriose. Ark. Kern., Mineral. Geol., Ser. A 17, Nr 18, 22 p. (1943).Google Scholar
  329. Myrbäck, K., and G. Neumüller: Amylases and the hydrolysis of starch and glycogen. The Enzymes, ed. by Summer and Myrbäck vol. 1, pps. 653–724. New York: Academic Press 1950.Google Scholar
  330. Myrbäck, K., u. G. Nycander: Über Grenzdextrine und Stärke. XV. Dextrinsäure und ihre Spaltung durch die Amylasen. Biochem. Z. 311, 234–241 (1942).Google Scholar
  331. Myrbäck, K., and B. Persson: Enzyme-substrate compounds and activity-pH-curves of the amylases. Ark. Kemi (Stockh.) 4, 495–502 (1952a).Google Scholar
  332. Inactivation of barley β-amylase by sodium dodecyl sulfate. Ark. Kemi (Stockh.) 4, 531–536 (1952b).Google Scholar
  333. Über die Inaktivierung der α-Malzamylase. II. Inaktivierung durch Heparin. Ark. Kemi (Stockh.) 5, 177–185 (1952c).Google Scholar
  334. Action of heparin on barley β-amylase. Ark. Kemi (Stockh.) 5, 477–487 (1953a).Google Scholar
  335. Products of potato starch degradation by malt α-amylase. Ark. Kemi (Stockh.) 5, 365–378 (1953b).Google Scholar
  336. Myrbäck, K., u. E. Silbohm: Wirkung der Malzamylasen auf niedrigmolekulare Hydrolyseprodukte der Stärke. Ark. Kemi (Stockh.) 1, 1–16 (1949).Google Scholar
  337. Myrbäck, K., u. W. Thorsell: Enzymatische Spaltung der Amylose. Svensk. kern. Tidskr. 54, 50–60 (1942).Google Scholar
  338. Statements referring to this paper are taken from Myrbäck 1948.Google Scholar
  339. Myrbäck, K., and E. Willstaedt: Starch degradation by the α-amylases. III. End products of the salivary amylase action. Ark. Kemi (Stockh.) 6, 443–454 (1953).Google Scholar
  340. Starch degradation by salivary amylase. III. Residual dextrins and the glucose formation. Ark. Kemi (Stockh.) 7, 403–415 (1954).Google Scholar
  341. Nakamura, M.: Effect of added primer on lima-bean phosphorylase. Nature (Lond.) 171, 795–796 (1953).CrossRefGoogle Scholar
  342. Nakamura, M., K. Yamasaki and B. Maruo: The enzymic formation and degradation of starch. Parts IV, V and VI. Distribution of phosphorylase, phosphatase and β-amylase in plants. J. Agric. Chem. Soc. Jap. 24, (IV) 197–201, (V) 299–302, (VI) 302–309 (1951).Google Scholar
  343. Newton, J. M., F. F. Farley and N. M. Naylor: The use of soybean β-amylase to follow the modification of starch. Cereal Chem. 17, 342–355 (1940).Google Scholar
  344. Nguyenvan Thoai, J. Roche, et M. J. Silhol-Bernère: Sur la dephosphorylation et l’amylolyse enzymatique des amidon-phosphates et des glycogéne-phosphates. C. r. Acad. Sci. Paris 223, 931–933 (1946).Google Scholar
  345. Northcote, D.H.: The molecular structure and shape of yeast glycogen. Biochemic. J. 53, 348–352 (1953).Google Scholar
  346. Electrophoresis of some neutral polysaccharides. Biochemic. J. 58, 353–358 (1954).Google Scholar
  347. Northcote, D. H., and R. W. Horne: Chemical composition and structure of the yeast cell wall. Biochemie. J. 51, 232–236 (1952).Google Scholar
  348. Nussenbaum, S.: Differentiation of amylopectin, amylodextrins, and amylose-fatty acid complexes. Analyt. Chem. 23, 1478–1479 (1951).CrossRefGoogle Scholar
  349. Nussenbaum, S., and W. Z. Hassid: Enzymatic synthesis of amylopectin. J. of Biol. Chem. 190, 673–683 (1951).Google Scholar
  350. Estimation of molecular weight of starch polysaccharides. Analyt. Chem. 24, 501–503 (1952a).Google Scholar
  351. Mechanism of amylopectin formation by the action of Q-enzyme. J. of Biol. Chem. 196, 785–792 (1952b).Google Scholar
  352. Ohlsson, E.: Über die beiden Komponenten der Malzdiastase, mit besonderer Berücksichtigung der Mutarotation der bei der Hydrolyse der Stärke gebildeten Produkte. Hoppe-Seylers Z. 189, 17–63 (1930).CrossRefGoogle Scholar
  353. Pantlitschko, M., and J. Matula: Investigation son highly purified glycogen sols. Mh. Chem. 81, 179–194 (1950).Google Scholar
  354. Brit. Abstr. A II, 353 (1952).Google Scholar
  355. Pazur, J. H.: The hydrolysis of amylotriose and amylotetraose by salivary amylase. J. of Biol. Chem. 205, 75–80 (1953).Google Scholar
  356. Reversible transglucosidation of isomaltose. Biochim. et Biophysica Acta 13, 158–159 (1954).Google Scholar
  357. Pazur, J. H., and T. Budovich: Hydrolysis of amylotriose by crystalline salivary amylase. Science (Lancaster, Pa.) 121, 702–703 (1955).Google Scholar
  358. Pazur, J. H., and D.French: The action of transglucosidase of Aspergillus oryzae on maltose. J. of Biol. Chem. 196, 265–272 (1952).Google Scholar
  359. Pazur, J. H., D. French and D. W. Knapp: Mechanism of salivary amylase action. Proc. Iowa Acad. Sci. 57, 203–209 (1950).Google Scholar
  360. Pazur. J. H., and R. M. Sandstedt: Identification of the reducing sugars in amylolysates of starch and starch-oligosaccharides. Cereal Chem. 31, 416–422 (1954).Google Scholar
  361. Peat, S.: The biological transformations of starch. Adv. Enzymol. 11, 339–375 (1951).Google Scholar
  362. The biological function of starch, Chapt. 2, pps. 5–24, in Radley 1953.Google Scholar
  363. Starch: Its constitution, enzymic synthesis and degradation. Fortschr. Chem. organ. Naturstoffe 11, 1–42 (1954).Google Scholar
  364. Peat, S., S. J. Pirt and W. J. Whelan: The enzymic synthesis and degradation of starch. XV. β-Amylase and the constitution of amylose. J. Chem. Soc. Lond. 1952a, 705–713.Google Scholar
  365. The enzymic synthesis and degradation of starch. XVI. The purification and properties of the β-amylase of soya bean. J. Chem. Soc. Lond. 1952b, 714–722.Google Scholar
  366. Peat, S., P. J. P. Roberts and W. J. Whelan: The occurrence of fructose in rabbit-liver glycogen. Biochemie. J. 51, xvii (1952).Google Scholar
  367. Peat, S., G. J. Thomas and W. J. Whelan: The enzymic synthesis and degradation of starch. XVII. Z-Enzyme. J. Chem. Soc. Lond. 1952, 722–733.Google Scholar
  368. Peat, S., and W. J. Whelan: The Z-enzyme in amylolysis. Nature (Lond.) 172, 494 (1953).CrossRefGoogle Scholar
  369. Peat, S., W. J. Whelan and J. M. Bailey: The enzymic synthesis and degradation of starch. XVIII. The minimum chain-lenght for Q-enzyme action. J. Chem. Soc. Lond. 1953, 1422–1427.Google Scholar
  370. Peat, S., W. J. Whelan and T. E. Edwards: Polysaccharides of baker’s yeast. I. Glycogen. J. Chem. Soc. Lond. 1955, 355–359.Google Scholar
  371. Peat, S., W. J. Whelan and K. A. Hinson: Synthetic action of almond emulsin. Nature (Lond.) 170, 1056–1057 (1952).CrossRefGoogle Scholar
  372. The enzymic polymerization of glucose. Chem. a. Ind. 1955, 385.Google Scholar
  373. Peat, S., W. J. Whelan, P. N. Hobson and G. J. Thomas: The enzymic synthesis and degradation of starch. XIX. The action of R-enzyme on glycogen. J. Chem. Soc. Lond. 1954, 4440–4445.Google Scholar
  374. Peat, S., W. J. Whelan and G. W. F. Kroll: The enzymic synthesis and degradation of starch. XXI. The dextrins synthesized by D-enzyme. J. Chem. Soc. Lond. 1956, 53–55.Google Scholar
  375. Peat, S., W. J. Whelan and H. G. Lawley: Isolation of mannitol from laminarin. Chem. a. Ind. 1955, 35–36.Google Scholar
  376. Peat, S., W. J. Whelan and S. J. Pirt: The amylolytic enzymes of soya bean. Nature (Lond.) 164, 499–500 (1949).CrossRefGoogle Scholar
  377. Peat, S., W. J. Whelan and W. R. Rees: D-Enzyme: a disproportionating enzyme in potato juice. Nature (Lond.) 172, 158 (1953).CrossRefGoogle Scholar
  378. The enzymic synthesis and degradation of starch. XX. The disproportionating enzyme (D-enzyme) of the potato. J. Chem. Soc. Lond. 1956, 44–53.Google Scholar
  379. Peat, S., W. J. Whelan and G. J. Thomas: Evidence of multiple branching in waxy maize starch. J. Chem. Soc. Lond. 1952, 4546–4548.Google Scholar
  380. The enzymic synthesis and degradation of starch. XXII. Evidence of multiple branching in waxy maize starch. A correction. J. Chem. Soc. Lond. 1956. 3025–3030.Google Scholar
  381. Piguet, A., et E.H. Fischer: Propriétés de la β-amylase de malt. Helvet. chim. Acta 35, 257–262 (1952).CrossRefGoogle Scholar
  382. Porter, H. K.: The inhibition of plant phosphorylases by β-amylase and the detection of phosphorylase in barley. Biochemic. J. 47, 476–482 (1950).Google Scholar
  383. Starch synthesis and degradation in vivo. Biochemical Soc. Symposium No 11, pps. 27–41. 1953a.Google Scholar
  384. The inhibition of α-amylase and phosphatase contaminants of potato phosphorylase preparations. J. of Exper. Bot. 4, 44–52 (1953b).Google Scholar
  385. Porter, H. K., and L. H. May: Metabolism of radioactive sugars by tobacco leaf disks. J. of Exper. Bot. 6, 43–63 (1955).CrossRefGoogle Scholar
  386. Porter, H. K., and W. R. Rees: Some effects of ethanol extracts of potatoes on the activity of a phosphorylase preparation. Plant Physiol. 29, 514–520 (1954).PubMedCrossRefGoogle Scholar
  387. Posternak, T.: Sur le phosphore des amidons. Helvet. chim. Acta 18, 1351–1369 (1935).CrossRefGoogle Scholar
  388. On the phosphorus of potato starch. J. of Biol. Chem. 188, 317–325 (1951).Google Scholar
  389. Potter, A., and W. Z. Hassid: Starch. I. End-group determination of amylose and amylopectin by periodate oxidation. J. Amer. Chem. Soc. 70, 3488–3490 (1948a).CrossRefGoogle Scholar
  390. Starch. II. Molecular weights of amyloses and amylopectins from starches of various plant origins. J. Amer. Chem. Soc. 70, 3774–3777 (1948b).Google Scholar
  391. Potter, A. L., and W. Z. Hassid: Starch. V. The uniformity of degree of branching in amylopectin. J. Amer. Chem. Soc. 73, 997–998 (1951a).CrossRefGoogle Scholar
  392. Starch. IV. The molecular constitution of amylose subfractions. J. Amer. Chem. Soc. 73, 593–595 (1951b).Google Scholar
  393. Potter, A. L., W..Z. Hassid and M. A. Joslyn: Starch. III. Structure of apple starch. J. Amer. Chem. Soc. 71, 4075–4077 (1949).CrossRefGoogle Scholar
  394. Potter, A. L., V. Silviera, R. M. Mc Cready and H. S. Owens: Fractionation of starches from smooth and wrinkled peas. Molecular weights, end-group assays and iodine affinities of the fractions. J. Amer. Chem. Soc. 75, 1335–1338 (1953).CrossRefGoogle Scholar
  395. Preece, I.A.: Starch and its products of amylolytic degradation. Progr. Org. Chem. 1, 248–279 (1952).Google Scholar
  396. Radley, J. A.: Starch and its derivatives, vol. I. London: Chapman & Hall Ltd. 1953.Google Scholar
  397. Ram, J. S., and K. V. Giri: Starch-synthesizing enzymes of green gram (Phaseohis radiatus). Arch. of Biochem. a. Biophysics 38, 231–236 (1952).CrossRefGoogle Scholar
  398. Rees, W. R.: Mechanisms concerned in the synthesis of starch in plants. Ph. D. Thesis. University of Cambridge 1953.Google Scholar
  399. Reichert, E. T.: The differentiation and specificity of starches in relation to genera, species etc. Parts I and II. Washington: Carnegie Institute of Washington, Publ. 173, 1913.Google Scholar
  400. Richtmyer, N. K.: 2,4,6-Trimethyl-β-phenyl- and benzyl-d-glucosides. J. Amer. Chem. Soc. 61, 1831–1832 (1939).CrossRefGoogle Scholar
  401. Roberts, E. A., and B. E. Proctor: The appearance of starch grains of potato tubers of plants grown under constant light and temperature conditions. Science (Lancaster, Pa.) 119, 509 (1954).Google Scholar
  402. Roberts, P. J. P.: α-Amylolysis in relation to the constitution of amylaceous polysaccharides. Ph. D. Thesis. University of Wales 1953.Google Scholar
  403. Roy, D. K.: Effect of limit dextrinase on alcohol yield from starch. Ann. Biochem. 12, 115–118 (1952). Chem. Abstr. 48, 3628 (1954).Google Scholar
  404. Roy, D. K., and M. K. Roy: Amylases of butyl organisms. Sci. a. Cult. 18, 339 (1953). Chem. Abstr. 47, 5483 (1953).Google Scholar
  405. Samec, M.: Recent results of starch investigations. VIII. The starch grain and water. Kolloidchem. Beih. 54, 435–483 (1943). Chem. Abstr. 38, 1136 (1944).Google Scholar
  406. Samec, M., C. Nučič u. V. Pirkmaier: Electrodialyse und Electrophorese in der Stärkeforschung. Kolloid-Z. 94, 350–358 (1941).CrossRefGoogle Scholar
  407. Samec, M., u. E. Waldschmidt-Leitz: Über die enzymatische Spaltbarkeit der Amylo- und Erythrokörper aus Stärke. Hoppe-Seylers Z. 203, 16–32 (1931).CrossRefGoogle Scholar
  408. Sandstedt, R. M.: Photomicrographic studies of starch. I. Development of the starch granules. Cereal Chem. 23, 337–359 (1946).Google Scholar
  409. III. Enzymatic digestion and granule structure. Cereal Chem. 32, No. 3, Suppl., 17–47 (1955).Google Scholar
  410. Sandstedt, R. M., and R. L. Gates: Raw starch digestion: a comparison of the raw starch digesting capabilities of the amylase systems from four α-amylase sources. Food Res. 19, 190–199 (1944). Chem. Abstr. 48, 12825 (1954).Google Scholar
  411. Schlamowitz, M.: On the nature of rabbit liver glycogen. I. Branching characteristics. J. of Biol. Chem. 188, 145–153 (1951).Google Scholar
  412. Schoch, T. J.: Non-carbohydrate substances in the cereal starches. J. Amer. Chem. Soc. 64, 2954–2956 (1942a).CrossRefGoogle Scholar
  413. Fractionation of starch by selective precipitation with butanol. J. Amer. Chem. Soc. 64, 2957–2961 (1942b).Google Scholar
  414. The fractionation of starch. Adv. Carbohydrate Chem. 1, 247–277 (1945).Google Scholar
  415. The starch fractions, Chapt. 6, pps. 123–200, in Radley 1953.Google Scholar
  416. Schoch, T. J., and C. C. Jensen: A simplified alkali-lability determination for starch products. Industr. Engng. Chem. (Anal.) 12, 531–532 (1940).CrossRefGoogle Scholar
  417. Scholander, H., and K. Myrbäck: Amylases in milling products. Svensk. kern. Tidskr. 63, 250–259 (1951).Google Scholar
  418. Schwimmer, S.: The role of maltase in the enzymolysis of raw starch. J. of Biol. Chem. 161, 219–234 (1945).Google Scholar
  419. Development and solubility of amylase in wheat kernels throughout growth and ripening. Cereal Chem. 24, 167–179 (1947).Google Scholar
  420. Kinetics of malt α-amylase action. J. of Biol. Chem. 186, 181–193 (1950).Google Scholar
  421. Schwimmer, S., and A. K. Balls: Isolation and properties of crystalline α-amylase from barley malt. J. of Biol. Chem. 179, 1063–1074 (1949).Google Scholar
  422. Senti, F. R., and L. P. Witnauer: X-Ray diffraction studies of addition compounds of amylose with inorganic salts. J. Polymer Sci. 9, 115–132 (1952).CrossRefGoogle Scholar
  423. Shu, P.: Nitrogen source for the production of amylolytic enzymes by submerged culture of Aspergillus niger. Canad. J. Bot. 30, 331–337 (1952). Chem. Abstr. 46, 8194 (1952).CrossRefGoogle Scholar
  424. Shu, P., and A.C. Blackwood: Carbon and nitrogen sources for the prpduction of amylolytic enzymes by submerged culture of Aspergillus niger. Canad. J. Bot. 29, 113–124 (1951). Chem. Abstr. 47, 5995 (1953).CrossRefGoogle Scholar
  425. Sjostrom, O.A.: Microscopy of starches and their modifications. Industr. Engng. Chem. (Industr.) 28, 63–74 (1936).CrossRefGoogle Scholar
  426. Sloan, J. W., B. H. Alexander, R. L. Lohmar, I. A. Wolff and C. E. Rist: Determination of dextran structure by periodate oxidation techniques. J. Amer. Chem. Soc. 76, 4429–4434 (1954).CrossRefGoogle Scholar
  427. Somogyi, M.: Interpretation of the saccharogenic action of diastase on the basis of substrate competition. J. of Biol. Chem. 134, 301–313 (1940).Google Scholar
  428. A new reagent for the determination of sugars. J. of Biol. Chem. 160, 61–68 (1945).Google Scholar
  429. Spark, L. C.: Structure of β-starch. Biochem. et biophysica Acta 8, 101–103 (1952).CrossRefGoogle Scholar
  430. Spoehr, H.A., and H. W. Milner: Leaf starch: its isolation and some of its properties. J. of Biol. Chem. 111, 679–687 (1935).Google Scholar
  431. Sprinson, D. H., and E. Chargaff: On oxidative decarboxylations with periodic acid. J. of Biol. Chem. 164, 433–449 (1946).Google Scholar
  432. Staudinger, H., and E. Husemann: Über hochpolymere Verbindungen. 150. Über die Konstitution der Stärke. Liebigs Ann. 527, 195–236 (1937).CrossRefGoogle Scholar
  433. Steiner, E. T., and J. D. Guthrie: Determination of starch in sweet potato products and other plant materials. Analyt. Chem. 16, 736–739 (1944).Google Scholar
  434. Sugihara, J. M., and M. L. Wolfrom: Maltotriose and its crystalline β-d-hendecaacetate. J. Amer. Chem. Soc. 71, 3357–3359 (1949).CrossRefGoogle Scholar
  435. Summer, R., and D. French: Action of β-amylase on branched oligosaccharides, J. of Biol. Chem. 222, 469–477 (1956).Google Scholar
  436. Sumner, J. B., T. C. Chou and A. T. Bever: Phosphorylase of the jack bean: its purification, estimation and properties. Arch. of Biochem. 26, 1–5 (1950).Google Scholar
  437. Sumner. J. B., and G. F. Somers: Water-soluble polysaccharides of sweet corn. Arch. of Biochem. 4, 7–9 (1944).Google Scholar
  438. Sutherland, E. W.: Polysaccharide phosphorylase, liver. Methods Enzymol. 1, 215–222 (1955).CrossRefGoogle Scholar
  439. Svanborg, K., and K. Myrbäck: Starch degradation by the α-amylases. Ark. Kemi (Stockh.) 6, 113–121 (1953).Google Scholar
  440. Swanson, M. A.: Studies on the structure of polysaccharides. II. Degradation of polysaccharides by enzymes. J. of Biol. Chem. 172, 805–814 (1948a).Google Scholar
  441. Studies on the structure of polysaccharides. IV. Relation of the iodine colour to the structure. J. of Biol. Chem. 172, 825–837 (1948b).Google Scholar
  442. Swanson, M. A., and C. F. Cori: Studies on the structure of polysaccharides. III. Relation of structure to activation of phosphorylases. J. of Biol. Chem. 172, 815–824 (1948).Google Scholar
  443. Takaoka, K., H. Fuwa and J. Nikuni: Crystallisation of α-type amylase of Aspergillus candidus var. amylolyticus. Mem. Inst. Sci. a. Ind. Research, Osaka Univ. 10, 199–204 (1953). Chem. Abstr. 47, 10569 (1953).Google Scholar
  444. Teas, H. J., J. W. Cameron and A. C. Newton: Tryptophan, niacin, indoleacetic acid, and carbohydrates in developing sugary and starchy maize kernels. Agron. J. 44, 434–437 (1952).CrossRefGoogle Scholar
  445. Thomas, G. J.: The branch linkages of starch. Ph. D. Thesis. University of Wales 1952.Google Scholar
  446. Thompson, A., K. Anno, M. L. Wolfrom and M. Inatome: Acid reversion products from d-glucose. J. Amer. Chem. Soc. 76, 1309–1311 (1954).CrossRefGoogle Scholar
  447. Thompson, A., and M. L. Wolfrom: Degradation of amylopectin to panose. J. Amer. Chem. Soc. 73, 5849–5850 (1951).CrossRefGoogle Scholar
  448. Thompson, A., M. L. Wolfrom and E. J. Quinn: Acid reversion in relation to isomaltose as a starch hydrolytic product. J. Amer. Chem. Soc. 75, 3003–3004 (1953).CrossRefGoogle Scholar
  449. Tsuchiya, H. M., J. Corman and H. J. Koepsell: Production of mold amylases in submerged cultures. II. Factors affecting the production of α-amylase and maltase by certain Aspergilli. Cereal Chem. 27, 322–330 (1950).Google Scholar
  450. Turvey, J. R.: Polysaccharides of Zea mays. Ph. D. Thesis 1955. See J. Chem. Soc. Lond. 1956, 2317–2322.Google Scholar
  451. Ulmann, B., u. B. Wendt: Zur Kenntnis des Amylopektins der Kartoffelstärke. Makromolekulare Chem. 12, 155–167 (1954).CrossRefGoogle Scholar
  452. Underkofler, L. A., and D. K. Roy: Crystallization of fungal α-amylase and limit dextrinase. Cereal Chem. 28, 18–29 (1951).Google Scholar
  453. Veibel, S.: β-Glucosidase. The Enzymes, ed. by Sumner and Myrbäck vol.1, pps. 583–620. New York: Academic Press 1950.Google Scholar
  454. Wallerstein, L., and P.P. Gray: U.S. Patent 2,583,451. Chem. Abstr. 46, 3782 (1952).Google Scholar
  455. Weibull, C., and A. Tiselius: A study of the starch phosphorylase of potato. Arkiv. Kern., Mineral., Geol., Ser. A 19, Nr 19, 25 pp. (1945).Google Scholar
  456. Whelan, W. J.: The enzymic breakdown of starch. Biochemical Soc. Symposium No 11, pps. 17–26. Cambridge: University Press 1953.Google Scholar
  457. Starch, glycogen, fructosans and similar polysaccharides. Modern Methods of Plant Analysis, ed. by Paech and Tracey, vol.11, pps. 145–196. Berlin: Springer 1955a.Google Scholar
  458. Phosphorylases from plants. Methods Enzymol. 1, 192–200 (1955b).Google Scholar
  459. Whelan, W. J., and J. M. Bailey: The action pattern of potato phosphorylase. Biochemic. J. 58, 560–569 (1954).Google Scholar
  460. Whelan, W. J., J. M. Bailey and P. J. P. Roberts: The mechanism of carbohydrase action. I. Preparation and properties of maltodextrin substrates. J. Chem. Soc. Lond. 1953, 1293–1298.Google Scholar
  461. Whelan, W. J., and B. J. Bines: Constitution of an amylopectin α-limit dextrin. Biochemic. J. 61, i (1955).Google Scholar
  462. Whelan, W. J., and K. Morgan: Chromatographie separation of methylglucoses. Chem. a. Ind. 1954, 78.Google Scholar
  463. Whelan, W. J., and J. G. Roberts: Products of the β-amylolysis of malto dextrins. Biochemic. J. 58, 569–570 (1954).Google Scholar
  464. Whelan, W. J., and P.J.P. Roberts: Action of salivary α-amylase on amylopectin and glycogen. Nature (Lond.) 170, 748–749 (1952).CrossRefGoogle Scholar
  465. The mechanism of carbohydrase action. II. α-Amylolysis of linear substrates. J. Chem. Soc. Lond. 1953, 1298–1304.Google Scholar
  466. Wheland, G. W.: Advanced Organic Chemistry. New York: Wiley 1950.Google Scholar
  467. Whistler R. L.: Starch retrogradation, Chapt. 8, pps. 213–228, in Radley 1953.Google Scholar
  468. Whistler, R. L., and C. Johnson: Effect of acid hydrolysis on the retrogradation of amylose. Cereal Chem. 25, 418–424 (1948).Google Scholar
  469. Whistler, R. L.. and C. L. Smart: Polysaccharide Chemistry. New York: Academic Press 1953.Google Scholar
  470. Whistler R. L., and P. Weatherwax: Amylose content of Indian cornstarches from North, Central and South American corns. Cereal Chem. 25, 71–75 (1948).Google Scholar
  471. Willstätter, R., u. M. Rohdewald: Über den Zustand des Glykogens in der Leber, im Muskel und in Leukocyten. Zur Kenntnis der Proteinbindung physiologisch wichtiger Stoffe. Hoppe-Seylers Z. 225, 103–124 (1934).CrossRefGoogle Scholar
  472. Wilson, E. J., T. J. Schoch and C. S. Hudson: Action of macerans amylase on the fractions from starch. J. Amer. Chem. Soc. 65, 1380–1383 (1943).CrossRefGoogle Scholar
  473. Witnauer, L. P., F. R. Senti and M. D. Stern: Molecular weight of amylopectin as determined by light scattering. J. Chem. Physics 20, 1978–1979 (1952).CrossRefGoogle Scholar
  474. Wolfrom, M. L., L. W. Georges, A. Thompson and I. L. Miller: Enzymic hydrolysis of amylopectin. Isolation of a crystalline trisaccharide hendecaacetate. J. Amer. Chem. Soc. 71, 2873–2875 (1949).CrossRefGoogle Scholar
  475. Wolfrom, M. L., E. N. Lassettre and A. N. O’Neill: Degradation of glycogen to isomaltose. J. Amer. Chem. Soc. 73, 595–599 (1951).CrossRefGoogle Scholar
  476. Wolfrom, M.L., and A. Thompson: Occurrence of the (l→3)-linkage in starches. J. Amer. Chem. Soc. 78, 4116–4117 (1956).CrossRefGoogle Scholar
  477. Wolfrom, M. L., A. Thompson, A. N. O’Neill and T. T. Galkowski: Isomaltitol. J. Amer. Chem. Soc. 74, 1062–1064 (1952).CrossRefGoogle Scholar
  478. Wolfrom, M.L., J. T.Tyree, T. T. Galkowski and A.N. O’Neill: Acid degradation of amylopectin to isomaltose and maltotriose. J. Amer. Chem. Soc. 73, 4927–4929 (1951).CrossRefGoogle Scholar
  479. Yamazaki, I., and U. Seinosuke: Action of black-kôji amylase on raw starch. J. Agric. Chem. Soc. Jap. 19, 681–684 (1951). Chem. Abstr. 45, 9089 (1951).Google Scholar
  480. Zimm, B. H., and C. D. Thurmond: The molecular weight of amylopectin. J. Amer. Chem. Soc. 74, 1111–1112 (1952).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • W. J. Whelan

There are no affiliations available

Personalised recommendations