Skip to main content

Abstract

The oligosaccharidases and the transglycosylases occupy a key position in the biological activities of plants because by their action they provide the cells with the simple sugars entering the various pathways involved in the production of energy. They receive their specific substrates either from the breakdown of reserve and structural polysaccharides or directly from the chain of reactions summarized as photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Adams, M., N. K. Richtmyer and C. S. Hudson: Some Enzymes present in highly purified Invertase Preparations; a contribution to the study of fructofuranosidases, galactosidases, glucosidases and mannosidases. J. Amer. Chem. Soc. 65, 1369 (1943).

    Article  CAS  Google Scholar 

  • Albon, N., D. J. Bell, P. H. Blanchard, D. Gross and J. T. Rundell: Kestose: a trisaccharide formed from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1953, 24.

    Google Scholar 

  • Anagnostopoulos, C., J. E. Courtois and F. Petek: Transferring action of the α-galactosidase of coffee beans. Bull. Soc. Chim. biol. Paris 36, 1115 (1954).

    PubMed  CAS  Google Scholar 

  • Antoniani, C.: Osservazioni sulla β-glucosidasi del Sorghum saccharatum. Real. Ist. lombardo Sci. e Lett., Rend. (2) 68, 355–362 (1935).

    CAS  Google Scholar 

  • Aristovskaya, T. V.: Enzyme activity of northern strains of microorganisms. Mikrobiologiya 17, 350 (1948).

    CAS  Google Scholar 

  • Aronson, M.: Transgalactosidation during lactose hydrolysis. Arch. of Biochem a. Biophysics 39, 370 (1952).

    Article  CAS  Google Scholar 

  • Baba, T.: Über die besonderen Verhältnisse bei der Phosphorylierung von Maltose durch frische untergärige Hefe, Trockenhefe und Mazerationssaft. Biochem. Z. 273, 207 (1934).

    CAS  Google Scholar 

  • Bacon, J. S. D.: Transfructosidation by a Yeast Invertase Preparation. Biochemie. J. 50, XVIII (1952).

    CAS  Google Scholar 

  • The oligosaccharides produced by the action of yeast invertase preparations on sucrose. Biochemie. J. 57, 320 (1954).

    Google Scholar 

  • Bacon, J. S. D., and D. J. Bell: A new trisaccharide produced from sucrose by mold invertase. J. Chem. Soc. (Lond.) 1953, 2528.

    Google Scholar 

  • Bacon, J. S. D., and J. Edelman: The action of invertase preparations. Arch. of Biochem. 28, 467 (1950).

    CAS  Google Scholar 

  • Bamann, E., u. K. Myrbäck: Die Methoden der Fermentforschung, Bd. 2. Leipzig: Georg Thieme 1941.

    Google Scholar 

  • Baranovskii, P.M.: Biochemical processes in sprouting of soybean seeds. Izv. Akad. Nauk. Kazakh. SSSR., Ser. Fiziol. i. Biokhim. Rastenii 1947, No 2, 44.

    Google Scholar 

  • Barker, S. A., and E. J. Bourne: Oligosaccharides synthesized from maltose by Escherichia coli. J. Chem. Soc. (Lond.) 1952, 209.

    Google Scholar 

  • Barker, S. A., E. J. Bourne and T. R. Carrington: Aspergillus niger. III. Structure of a trisaccharide synthesized from sucrose. J. Chem. Soc. (Lond.) 1954, 2125.

    Google Scholar 

  • Barker, S. A., E. J. Bourne, G. C. Hewitt and M. Stacey: Aspergillus niger. IV. Synthesis of β-linked glucosaccharides. J. Chem. Soc. (Lond.) 1955, 3734.

    Google Scholar 

  • Barker, S. A., E. J. Bourne and M. Stacey: Aspergillus niger. I. The structure of the polyglucosan synthesized by Aspergillus niger 152. J. Chem. Soc. (Lond.) 1953, 3084.

    Google Scholar 

  • Barker, S. A., and T. R. Carrington: Aspergillus niger. II. Transglycosidation by Aspergillus niger. J. Chem. Soc. (Lond.) 1953, 3588.

    Google Scholar 

  • Bau, A.: Über ein neues Enzym der Hefe. Chemiker-Ztg 19, 1873–1874 (1895).

    CAS  Google Scholar 

  • Bauer, C. R., and C. L. Gemmill: The heat produced by the enzymic action of the sucrose-invertase and urea-urease systems. Arch. of Biochem. a. Biophysics 35, 110 (1952).

    Article  CAS  Google Scholar 

  • Bealing, F. J.: Mould Glucosaccharase”: a Fructosidase. Biochemie. J. 55, 93 (1953).

    CAS  Google Scholar 

  • Bell, D. J., and J. Edelman: Disaccharide synthesis following fructose transfer from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1954, 4652.

    Google Scholar 

  • Berthelot, M.: Über die Produkte der Gärung des Zuckers. C. r. Acad. Sci. Paris 50, 980–984 (1860).

    Google Scholar 

  • Blanchard, P. H., and N. Albon: The inversion of sucrose; a complication. Arch. of Biochem. 29, 220 (1950).

    CAS  Google Scholar 

  • Bourquelot, E.: C. r. Acad. Sci. Paris 97, 1322 (1883); 116, 826 (1893).

    Google Scholar 

  • Bourquelot, E., et A. Aubry: Influence de l’acide acétique sur les propriétés synthétisantes et hydrolysantes de la glucosidase α. J. Pharm. et Chim. (7) 12, 15 (1915).

    CAS  Google Scholar 

  • Influence de la soude sur les propriétés synthétisantes et la glucosidase α. J. Pharm. et Chim. (7) 12, 182 (1915).

    Google Scholar 

  • Synthèse biochim. d’un galactobiose. J. Pharm. et. Chim. (7) 14, 65 (1917).

    Google Scholar 

  • Krystallisation und Eigenschaften der früher durch biochemische Synthese erhaltenen Galaktobiose. J. Pharm. et Chim. (7) 15, 246–249 (1917).

    Google Scholar 

  • Synthèse biochim. d’un deuxième galactobiose. J. Pharm. et Chim. (7) 15, 273 (1917).

    Google Scholar 

  • Bourquelot, E., et M. Bridel: Synthèse biochim. des glucosides d’alcools polyvalents; glucosides α de la glycérine et du glycol. J. Pharm. et Chim. (7) 8, 489, 547 (1913a).

    Google Scholar 

  • Bourquelot, E., et H. Hérissey: Synthèse biochim. d’un glucoside isomère de la salicine, le salicylglucoside β. J. Pharm. et Chim. (7) 8, 49 (1913b).

    Google Scholar 

  • Bourquelot, E., H. Hérissey et M. Bridel: Synthesen von α-Glucosiden mit Hilfe von α-Glucosidase, einem in der an der Luft getrockneten, untergärigen Hefe enthaltenen Enzym: α-Methyl- und α-Äthylglucosid. J. Pharm. et Chim. (7) 7, 145–154 (1913c).

    Google Scholar 

  • Synthèse biochim. des glucosides d’alcools (glucosides α). III. Propylglucoside α et allylglucoside α. J. Pharm. et Chim. (7), 7, 525 (1913c).

    Google Scholar 

  • Bourquelot, E., H. Hérissey et J. Coirre: Synthèse biochimique d’un sucre du groupe des hexobioses, le gentiobiose. C. r. Acad. Sci. Paris 157, 732 (1913d).

    Google Scholar 

  • Brown, H. T., u. J. Heron: Über die hydrolytische Wirkung des Pankreas und des Dünndarms. Liebigs Ann. 204, 228 (1880).

    Article  Google Scholar 

  • Buchanan, J. G., J. A. Bassham, A. A. Benson, D. F. Broadlay, M. Calvin, L. L. Daus, M. Goodman, P.M.Hayes, V. H. Lynch, L. T. Norris and A.T.Wilson: The rôle of phosphate in the metabolism of photosynthetic organisms. In: A Symposium on Phosphorus Metabolism, vol. II, p. 440. Edited by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  • Bunton, C. A., T. A. Lewis, D. R. Llewellyn, H. Tristram and C. A. Vernon: Hydrolysis of methylglucosides. Nature (Lond.) 174, 560 (1954).

    Article  CAS  Google Scholar 

  • Buston, H. W., and A. Jabbar: Synthesis of β-linked glucosaccharides by extracts of Chaetomium globosum. Biochim. et Biophysica Acta 15, 543 (1954).

    Article  CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladine: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333 (1950).

    CAS  Google Scholar 

  • Caputto, R., L. F. Leloir u. R. E. Trucco: Lactase and lactose fermentation in Saccharomyces fragilis. Enzymologia (Den Haag) 12, 350 (1948).

    CAS  Google Scholar 

  • Cohn, M.: Mechanisms of cleavage of glucose-1-phosphate. J. of Biol. Chem. 180, 771 (1949).

    CAS  Google Scholar 

  • Cohn, M., and J. Monod: Purification and properties of the β-galactosidase (lactase) of Escherichia coli. Biochim. et Biophysica Acta 7, 153 (1951).

    Article  CAS  Google Scholar 

  • Cohn, M., and A. M. Torriani: Relationships in biosynthesis of the β-galactosidase and Pz proteins in Escherichia coli. Biochim. et Biophysica Acta 10, 280 (1953).

    Article  CAS  Google Scholar 

  • Courtois, J. E., C. Anagnostopoulos and F. Petek: Action of α-galactosidase on stachyose. Isolation of saccharose and raffinose. Enzymologia (Den Haag) 17, 69 (1954).

    CAS  Google Scholar 

  • Crook, E. M., and B. A. Stone: Formation of oligosaccharides during the enzymic hydrolysis of β-glucosides. Biochemic. J. 55, XXV (1953).

    CAS  Google Scholar 

  • Dam, B. van, J. G. Revallier-Warffemius and L. C. van Dam-Schermerhorn: Preparation of lactase from Saccharomyces fragilis. Netherlands Milk Dairy J. 4, 96 (1950).

    Google Scholar 

  • Davies, R.: Enzyme formation in Saccharomyces fragilis. I. Invertase and Raffinase. Biochemic. J. 55, 484 (1953).

    CAS  Google Scholar 

  • Dieu, H. A.: Invertase Studies. I. Bull. Soc. chim. Belg. 55, 306 (1947).

    Article  CAS  Google Scholar 

  • Invertase Studies. II. Bull. Soc. chim. Belg. 55, 327 (1947).

    Google Scholar 

  • Edelman, J.: Transfer reactions catalysed by some sucrase preparations. Biochemie. J. 57, 22 (1954).

    CAS  Google Scholar 

  • Elander, M., and K. Myrbäck: Isolation of crystalline trehalose after fermentation of glucose by maceration juice. Arch. of Biochem. 21, 249 (1949).

    CAS  Google Scholar 

  • Fischer, E.: Einfluß der Configuration auf die Wirkung der Enzyme. I. Ber. dtsch. chem. Ges. 27, 2985–2993 (1894).

    Article  CAS  Google Scholar 

  • Einfluß der Configuration auf die Wirkung der Enzyme. II. Ber. dtsch. chem. Ges. 27, 3479–3483 (1894).

    Google Scholar 

  • Über den Einfluß der Configuration auf die Wirkung der Enzyme. III. Ber. dtsch. chem. Ges. 28, 1429–1438 (1895).

    Google Scholar 

  • Fischer, E., u. E. F. Armstrong: Synthese einiger neuer Disaccharide. Ber. dtsch. chem. Ges. 35, 3144–3153 (1902).

    Article  CAS  Google Scholar 

  • Fischer, E. H., u. L. Kohtès: Purification de l’invertase de levure. Helvet. chim. Acta 34, 1123 (1951).

    Article  CAS  Google Scholar 

  • Fischer, E. H., L. Kohtès u. J. Fellig: Propriétés de l’invertase purifiée. Helvet. chim. Acta 34, 1132 (1951).

    Article  CAS  Google Scholar 

  • Fitting, C., and M. Doudoroff: Phosphorolysis of maltose by enzyme preparations from Neisseria meningitidis. J. of Biol. Chem. 199, 153 (1952).

    CAS  Google Scholar 

  • French, D.: Structure of Pan’s crystalline trisaccharide. Science (Lancaster, Pa.) 113, 352 (1951).

    CAS  Google Scholar 

  • The raffinose family of oligosaccharides. Adv. Carbohydrate Chem. 9, 149 (1954).

    Google Scholar 

  • French, D., G. M. Wild and W. J. James: Constitution of stachyose. J. Amer. Chem. Soc. 75, 3664 (1953).

    Article  CAS  Google Scholar 

  • Fujii, M.: Studies on sugarcane invertase. I. Leaf invertase. J. Agric. Chem. Soc. Jap. 18, 961 (1942).

    CAS  Google Scholar 

  • Studies on sugar-cane invertase. II. Distribution of invertase in the leaves and its enzymic chemical properties. J. Agric. Chem. Soc. Jap. 20, 421 (1944).

    Google Scholar 

  • Gillespie, J. M., M. A. Jermyn and E. F. Woods: Multiple nature of the enzymes of Aspergillus oryzae and of horse-radish. Enzymes of Aspergillus oryzae. Nature (Lond.) 169, 487 (1952).

    Article  CAS  Google Scholar 

  • Gilliland, R. B.: A yeast hybrid heterozygotic in four fermentation characters. C. r. Labor. Carlsberg, Ser. Physiol. 24, 347 (1949).

    Google Scholar 

  • Gottschalk, A.: The proportion of fructo-furanose present in d-fructose solution at equilibrium (0°C). Austral. J.Exper. Biol. a.Med. Sci. 21, 139 (1943).

    Article  CAS  Google Scholar 

  • The effect of temperature on the fermentation of d-mannose by yeast. Biochem. J. 41, 276 (1947).

    Google Scholar 

  • Mechanism of enzyme specificity in the domain of carbohydrates. Nature (Lond.) 160, 113 (1947).

    Google Scholar 

  • “Direct” fermentation of disaccharides by yeast. A critical discussion. Wallerstein Lab. Communications 12, 55 (1949).

    Google Scholar 

  • Principles underlying enzyme specificity in the domain of carbohydrates. Adv. Carbohydrate Chem. 5, 49 (1950).

    Google Scholar 

  • α-d-Glucosidases. In: The Enzymes. Chemistry and Mechanism of Action. Vol. I, part. 1, p. 551. Edited by J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.

    Google Scholar 

  • On the Mechanism of Enzyme Action. Rev. Pure a. Appl. Chem. 3, 179 (1953).

    Google Scholar 

  • Gross, D.: Paper electrophoresis of the oligosaccharides synthesized from sucrose by yeast invertase. Nature (Lond.) 173, 487 (1954).

    Article  CAS  Google Scholar 

  • Gross, D., P.H.Blanchard and D. J. Bell: Neo-kestose; a trisaccharide formed from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1954, 1727.

    Google Scholar 

  • Halvorson, H. O., and S. Spiegelman: The inhibition of enzyme formation by amino acid analogues. J. Bacter. 64, 207 (1952).

    CAS  Google Scholar 

  • Hassid, W. Z.: Biosynthesis of complex saccharides. Contribution to ‘Chemical Pathways of Metabolism’, Vol. I, p. 235–275. Edited by D. M. Greenberg. New York: Academic Press 1954.

    Google Scholar 

  • Hassid, W. Z., and M. Doudoroff: Synthesis of disaccharides with bacterial enzymes. Adv. Enzymol. 10, 123 (1950).

    Google Scholar 

  • Hassid, W. Z., M. Doudoroff, A. L. Potter and H. A. Barker: Structure of an enzymatically synthesized reducing disaccharide, d-glucosido-L-arabinose. J. Amer. Chem. Soc. 70, 306 (1948).

    Article  CAS  Google Scholar 

  • Hattori, S., and T. Siroya: Sugars in the seeds and seedlings of Pinus thunbergi. Bot. Mag. (Tokyo) 64, 137 (1951).

    CAS  Google Scholar 

  • Hehre, E. J.: The biological synthesis of dextran from dextrins. J. of Biol. Chem. 192, 161 (1951).

    CAS  Google Scholar 

  • Hehre, E. J., and A. S. Carlson: Evidence on the constitution of melezitose through degradation to sucrose by bacterial action. Arch. of Biochem. a. Biophysics 36, 158 (1952).

    Article  CAS  Google Scholar 

  • Helferich, B.: Emulsin. Erg. Enzymforsch. 7, 83–104 (1938).

    CAS  Google Scholar 

  • Enzyme Specificity. In: The Enzymes. Chemistry and Mechnisms of Action. Vol. 1, part. 1, p. 79. Edited by J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.

    Google Scholar 

  • Helferich, B., S. Demant, J. Goerdeler u. R. Bosse: Über die Carbohydrasen des Gerstenmalzes, das „Malz-Emulsin“. Hoppe-Seylers Z. 283, 179–186 (1948).

    Article  CAS  Google Scholar 

  • Helferich, B., u. H. Rauch: Zucker-Synthesen, IV. 6-β-d-Galaktosido-d-glucose, ein Beitrag zur Konstitution der Melibiose. Ber. dtsch. chem. Ges. 59, 2655 bis 2657 (1926).

    Article  Google Scholar 

  • Helferich, B., u. G. Sparmberg: Krystallisierte 6-β-d-Galaktosido-d-glucose. Ber. dtsch. chem. Ges. 66, 806–807 (1933).

    Article  Google Scholar 

  • Helferich, B., u. F. V. Stryk: Methansulfonsäureester in der Zuckergruppe. V. Mitt. Über die Ferment-Spaltung von Trehalose. Ber. dtsch. chem. Ges. 74, 1794–1798 (1941).

    Article  Google Scholar 

  • Helferich, B., u. F.Vorsatz: Über Kaffee-Emulsin. Emulsin XXV. Hoppe-Seylers Z. 237, 254–260 (1935).

    Article  CAS  Google Scholar 

  • Hérissey, H.: Sur l’hydrolyse du méthyle-d-mannoside-α par des ferments solubles. C. r. Acad. Sci. Paris 172, 766–768 (1921).

    Google Scholar 

  • Hestrin, S.: Specificity of mold maltase. Enzymologia (Den Haag) 8, 193 (1940).

    CAS  Google Scholar 

  • Hestrin, S., and C. C. Lindegren: Carbohydrases in Saccharomyces Haploid Stocks of Defined Genotype. II. Gene-Controlled Induction of Glucosidases by α-Glucosides. Arch. of Biochem. a. Biophysics 38, 317 (1952).

    Article  CAS  Google Scholar 

  • Hill, K.: Über Luzerneemulsin. Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-phys. Kl. 86, 115–128 (1934).

    CAS  Google Scholar 

  • Hoeckner, E.: Die Rohrzuckerspaltung durch Bacterium coli. Z.Hyg. 129, 519–537 (1949).

    Article  CAS  Google Scholar 

  • Hofmann, E.: Untersuchungen über Glykoside- und Disaccharide-spaltende Enzyme von Schimmelpilzen. Biochem. Z. 272, 133 (1934a).

    CAS  Google Scholar 

  • Vorkommen von Maltase und Saccharase bei Schizosaccharomyces octosporus (Beijerinck) und deren Trennung. Biochem. Z. 272, 417 (1934b).

    Google Scholar 

  • Neues zur Frage nach der Spezifität der Glykosidasen, insbesondere bei Schimmelpilzen und Bakterien. Naturwiss. 22, 406–409 (1934c).

    Google Scholar 

  • Hofmann, E., u. E. Latzko: Einflüsse der Nährstoffe Kali und Stickstoff auf Fermentgehalt und Qualität pflanzlicher Erzeugnisse. Biochem. Z. 321, 476–481 (1951).

    PubMed  CAS  Google Scholar 

  • Hofmann, E., u. H. Scheck: Über die Trennung von β-Glukosidase und β-Galactosidase bei Milchzuckerhefen. Biochem. Z. 319, 522–528 (1949).

    Google Scholar 

  • Hogness, D. S., M. Cohn and J. Monod: Studies on the induced synthesis of β-galactosidase in Escherichia coli: The kinetics and mechanism of sulphur incorporation. Biochim. et Biophysica Acta 16, 99 (1955).

    Article  CAS  Google Scholar 

  • Isaiev, V. J.: The maltase of yeast. J. Inst. Brewing 32, 552 (1926).

    Google Scholar 

  • Ishii, R., and S. Akagi: Studies on Monilia sitophila. II. Enzymes produced. Hakkô Kôgaku Zasshi (J. Fermentation Technol.) 26, 276 (1948).

    Google Scholar 

  • Jermyn, M. A.: Fungal Cellulases. VI. Substrate and inhibitor specificity of the β-glucosidase of Stachybotrys atra. Austral. J. Biol. Sci. 8, 577 (1955).

    CAS  Google Scholar 

  • Jermyn, M. A., and R. Thomas: Transferase activity of the β-glucosidase of Aspergillus oryzae. Austral. J. Biol. Sci. 6, 70 (1953).

    CAS  Google Scholar 

  • Kalckar, H. M.: The mechanism of transglycosidation. In: A Symposium on the Mechanism of Enzyme Action, p. 675. Edited by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Kasparova, S.A., and A. M. Khristoforrova: Biochemical processes in ascertaining the winter hardiness of clover for arctic planting. Biokhimiya 13, 441 (1948).

    CAS  Google Scholar 

  • Kharebava, G. I.: Enzymic processes in a living tea leaf. Biokhimiya Chaĭnago Proízvodstva Sbornik 1946, Nr 5, 86.

    Google Scholar 

  • Kitahara, K., and M. Kurushima: The diastatic enzyme systems of moulds. I. Comparison of diastatic enzyme systems of several important moulds. Hakkô Kôgaku Zasshi (J. Fermentation Technol.) 27, 1 (1949).

    CAS  Google Scholar 

  • Kobayashi, K.: Sugar-hydrolysing enzymes. VI. Differences between β-glucosidase and β-galactosidase. J. Jap. Biochem. Soc. 18, 41 (1944).

    CAS  Google Scholar 

  • Koppel, J. L., C. J. Porter and B. F. Crocker: Mechanism of the synthesis of enzymes. I. Development of a system suitable for studying this phenomenon. J. Gen. Physiol. 36, 703 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D.E.: Stereochemistry and the Mechanism of Enzymatic Reactions. Biol. Rev. 28, 416 (1953).

    Article  CAS  Google Scholar 

  • Koshland, D. E., and S. S. Stein: Enzyme specificity and enzyme mechanism. Federat.Proc. 12, 233 (1953).

    Google Scholar 

  • Kuby, S. A., and H. A. Lardy: Purification and kinetics of β-d-galactosidase from Escherichia coli strain K-12. J. Amer. Chem. Soc. 75, 890 (1953).

    Article  CAS  Google Scholar 

  • Kuhn, R.: Saccharase- und Raffinasewirkung des Invertins. Hoppe-Seylers Z. 125, 28–92 (1923).

    Article  Google Scholar 

  • Lederberg, J.: The β-d-galactosidase of Escherichia coli strain K-12. J. Bacter. 60, 381 (1950).

    CAS  Google Scholar 

  • Leloir, L. F., and E. Cabib: The enzymic synthesis of trehalose phosphate. J. Amer. Chem. Soc. 75, 5445 (1953).

    Article  CAS  Google Scholar 

  • Lester, G.: The β-galactosidase of lactose mutants of Escherichia coli K-12. Arch. of Biochem. a. Biophysics 40, 390 (1952).

    Article  CAS  Google Scholar 

  • Lindegren, C. C.: The Yeast Cell, its Genetics and Cytology. St. Louis: Educational Publishers 1949.

    Google Scholar 

  • Lisitsyn, D.I.: Activity of carbohydrase in leaves of “glucoside” plants. Biokhimiya 18, 188 (1953).

    CAS  Google Scholar 

  • Lukes, T. M., and H. J. Phaff: Characteristics of trehalase in Candida tropicalis. Antonie van Leeuwenhoek J. Microbiol. a. Serol. 18, 323 (1952).

    Article  CAS  Google Scholar 

  • Mandels, G. R.: Invertase of Myrothecium verrucaria spores. Amer. J. Bot. 38, 213 (1951).

    Article  CAS  Google Scholar 

  • Mehrotra, B. S.: Physiological studies of Phytophthora. I. Enzyme action. J. Indian Bot. Soc. 28, 108 (1949).

    CAS  Google Scholar 

  • Michaelis, L., u. H. Davidsohn: Die Wirkung der H-Ionen auf das Invertin. Biochem. Z. 35, 386 (1911).

    Google Scholar 

  • Michaelis, L., u. M. L. Menten: Die Kinetik der Invertin Wirkung. Biochem. Z. 49, 333 (1913).

    CAS  Google Scholar 

  • Miwa, T.: Enzymic transfer of sugars. Symposia Enzyme Chem. (Japan) 8, 57 (1953).

    CAS  Google Scholar 

  • Miwa, T., C. Cheng, M. Fujisaki and A. Toishi: The specificity of glucosidases. I. Relations between glucosidases of various origins and β-d-glucosides of various compositions. Acta Phytochim. (Tokyo) 10, 155 (1937).

    CAS  Google Scholar 

  • Miwa, T., K. Takano, K. Mafune and S. Furutani: Glucotransferase. Proc. Japan. Acad. 25, 111 (1949).

    CAS  Google Scholar 

  • Miwa, T., and K. Tanaka: Glycosidases of apricot emulsin. Symposia Enzyme Chem. (Japan) 2, 19 (1949).

    CAS  Google Scholar 

  • Monod, J., G. Cohen-Bazire and M. Cohn: The biosynthesis of β-galactosidase (lactase) by Escherichia coli. Biochim. et Biophysica Acta 7, 585 (1951).

    Article  CAS  Google Scholar 

  • Monod, J., A. M. Torriani and J. Gribetz: Lactase extract from a stock of mutable Escherichia coli. C. r. Acad. Sci. Paris 227, 315 (1948).

    CAS  Google Scholar 

  • Morita, Y.: β-Xylosidase. J. Jap. Biochem. Soc. 24, 189 (1952).

    Google Scholar 

  • Myrbäck, K.: α-Glukosidase und Disaccharidspaltung. Hoppe-Seylers Z. 205, 248 (1932).

    Article  Google Scholar 

  • Myrbäck, K., u. U. Björklund: Activity-pH-curves of the enzymatic saccharose and raffinose hydrolysis. Ark. Kemi (Stockh.) 4, 567 (1952).

    Google Scholar 

  • Narayanamurti, D., u. G. M. Verma: Cellulase and invertase from Polystictus sanguineus. The mechanism of wood-protective agents. Holz als Roh- u. Werkstoff 11, 7 (1953).

    Article  CAS  Google Scholar 

  • Nath, K., and H. N. Rydon: The influence of structure on the hydrolysis of substituted phenyl β-d-glucosides by emulsin. Biochemie. J. 57, 1 (1954).

    CAS  Google Scholar 

  • Nelson, J. M., E. T. Palmer and B. G. Wilkes: Similarity of the kinetics of invertase action in vivo and in vitro. J. Gen. Physiol. 15, 491 (1932).

    Article  PubMed  CAS  Google Scholar 

  • Nelson, J. M., and B. G. Wilkes: Similarity of the kinetics of invertase action in vivo and in vitro. III. J. Gen. Physiol. 16, 571 (1933).

    Article  PubMed  CAS  Google Scholar 

  • Neuberg, C.: Zur Kenntnis der Raffinose. Abbau der Raffinose zu Rohrzucker und d-Galaktose. Biochem. Z. 3, 519–534 (1907).

    Google Scholar 

  • Neuberg, C., u. E. Hofmann: Über enzymatische Spaltungen der Malto- und Lactobionsäure. Biochem. Z. 252, 434–439 (1932).

    CAS  Google Scholar 

  • Neuberg, C., u. S. Lachmann: Zur Kenntnis der Stachyose. Biochem. Z. 24, 171–177 (1910).

    CAS  Google Scholar 

  • Neuberg, C., and I. Mandl: Invertase. In: The Enzymes. Chemistry and Mechanism of Action. Vol. 1, part. 1, p. 527. Edited by J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.

    Google Scholar 

  • Nilsson, R., u. F. Alm: On the rôle of adenylpyrophosphatase in alcoholic fermentation and on the occurrence of trehalose during fermentation with maceration juice. Acta chem. scand. (Helsinki) 3, 213 (1949).

    Article  CAS  Google Scholar 

  • Nishizawa, K., and K. Wakabayashi: Enzymic breakdown of β-cellobioside. I. Specificity of the β-cellobioside-splitting enzymes of apricot and malt. J. Jap. Biochem. Soc. 24, 36 (1952).

    Google Scholar 

  • Niwa, K.: Purification of β-glucosidase of Aspergillus niger II. J. of Biochem. (Tokyo) 38, 109 (1951).

    CAS  Google Scholar 

  • Oppenheimer, C.: Die Fermente und ihre Wirkungen, 5. Aufl., Bd. 1. Leipzig: Georg Thieme 1925.

    Google Scholar 

  • Pan, S. C., L. W. Nicholson and P. Kolachov: Isolation of a crystalline trisaccharide from the unfermentable carbohydrate produced enzymically from maltose. J. Amer. Chem. Soc. 73, 2547 (1951).

    Article  CAS  Google Scholar 

  • Enzymic synthesis of oligosaccharides: A transglycosidation. Arch. of Biochem. a. Biophysics 42, 406 (1953).

    Google Scholar 

  • Pazur, J. H.: Transfructosidation reactions of an enzyme of Aspergillus oryzae. J. of Biol. Chem. 199, 217 (1952).

    CAS  Google Scholar 

  • The mechanism of enzymatic synthesis of galactosyl oligosaccharides. J. of Biol. Chem. 208, 439 (1954).

    Google Scholar 

  • Pazur, J. H., and D. French: The action of transglucosidase of Aspergillus oryzae on maltose. J. of Biol. Chem. 196, 265 (1952).

    CAS  Google Scholar 

  • Peat, S., W. J. Whelan and K. A. Hinson: Synthetic action of almond emulsin. Nature (Lond.) 170, 1056 (1952).

    Article  CAS  Google Scholar 

  • Pigman, W. W.: Action of almond emulsin on the phenyl glycosides of synthetic sugars and on β-thiophenyl-d-glucoside J. Res. Nat. Bur. Stand. 26, 197–204 (1941).

    Google Scholar 

  • Pigman, W. W.: Specificity, classification and mechanism of action of the glycosidases. Adv. Enzymol. 4, 41 (1944).

    CAS  Google Scholar 

  • Pigman, W. W., and R. M. Goepp: Chemistry of the Carbohydrates. New York: Academic Press 1948.

    Google Scholar 

  • Pringsheim, H., u. J. Leibowitz: Über Reversionssynthesen: I. Die Wirkung der Hefemaltase. Ber. dtsch. chem. Ges. 57, 1576 (1924).

    Article  Google Scholar 

  • Purves, C.B., and C. S. Hudson: Analysis of γ-methyl fructoside mixtures by means of invertase. I. J. Amer. Chem. Soc. 56, 702 (1934).

    Article  CAS  Google Scholar 

  • Analysis of γ-methyl fructoside mixtures by means of invertase. IV. Behaviour of sucrose in methanol containing hydrogen chloride. J. Amer. Chem. Soc. 56, 1973 (1934).

    Google Scholar 

  • Putman, E. W., C. Fitting Litt and W. Z. Hassld: The structure of d-glucosyl-d-xylose synthesized by maltose phosphorylase. J. Amer. Chem. Soc. 77, 4351 (1955).

    Article  CAS  Google Scholar 

  • Rabaté, J.: Sur l’hydrolyse du salicoside par la poudre fermentaire de feuilles de Salix purpurea et sur quelques phénomènes qui en dérivent. Bull. Soc. chim. biol. Paris 17, 572 (1935).

    Google Scholar 

  • Roberts, H. R., and E. F. Mc Farren: The Chromatographie observation of oligosaccharides formed during the lactase hydrolysis of lactose. J. Dairy Sci. 36, 620 (1953).

    Article  CAS  Google Scholar 

  • The formation of oligosaccharides during the lactase hydrolysis of lactose. Arch. of Biochem. a. Biophys. 43, 233 (1953).

    Google Scholar 

  • Robinson, R., and W. T. J. Morgan: Trehalose monophosphoric ester isolated from the products of fermentation of sugars with dried yeast. Biochemie. J. 22, 1277 (1928).

    Google Scholar 

  • Roy, D. K., and M. K. Roy: Amylases of butyl organisms. Science a. Culture (India) 18, 339 (1953).

    CAS  Google Scholar 

  • Sadasivan, V.: The phosphatases in coconut (Cocos nucifera). Arch. of Biochem. 30, 159 (1951).

    CAS  Google Scholar 

  • Saksena, R. K., and S. K. Bose: Enzymes of two water moulds. J. Indian Bot. Soc. 23, 108 (1944).

    CAS  Google Scholar 

  • Saroja, K., R. Venkataraman and K. V. Gibi: Transglucosidation in Penicillium chrysogenum Q-176. Biochemie. J. 60, 399 (1955).

    CAS  Google Scholar 

  • Sisakyan, N.M., and A.M. Kobyakova: Enzymic activity of protoplasmic structures. Biokhimiya 14, 86 (1949).

    CAS  Google Scholar 

  • Formation and movement of enzymes in living organisms. Biokhimiya 16, 292 (1951).

    Google Scholar 

  • Type of union of enzymes with the protein complex of plastids. Biokhimiya 17, 368 (1952).

    Google Scholar 

  • Sizer, I. W.: Sucrose inversion by baker’s yeast as a function of temperature. J. Gen. Physiol. 21, 695 (1938).

    Article  PubMed  CAS  Google Scholar 

  • Inactivation of invertase by tyrosinase. Science (Lancaster, Pa.) 108, 335 (1948).

    Google Scholar 

  • Sosa-Bourdouil, C.: The enzymic activity of the antherozoids and the ovules of Fucus vesiculosus L. Bull. mus. nat. hist. nat. (Paris) 18, 142 (1946).

    CAS  Google Scholar 

  • Enzymic activity of the inflorescences of Ginkgo biloba in the course of development. C. r. Acad. Sci. Paris 224, 1651 (1947).

    Google Scholar 

  • Spiegelman, S., M. Sussman and B. Taylor: Isolation and characterization of two adaptive enzymes formed by yeast in response to maltose. Federat. Proc. 9, 120 (1950).

    Google Scholar 

  • Stodola, F. H., H. J. Koepsell and E. S. Sharpe: A new disaccharide formed by Leuconostoc mesenteroides. J. Amer. Chem. Soc. 74, 3202 (1952).

    Article  CAS  Google Scholar 

  • Sumner, J. B., and S. F. Howell: Method for determination of saccharase activity. J. of Biol. Chem. 108, 51 (1935).

    CAS  Google Scholar 

  • Sumner, J. B., and K. Myrbäck: The Enzymes. Chemistry and Mechanism of Action. New York: Academic Press 1950.

    Google Scholar 

  • Sumner, J. B., u. D. J. O’Kane: The chemical nature of yeast saccharase. Enzymologia (Den Haag) 12, 251 (1948).

    CAS  Google Scholar 

  • Takano, K., and T. Miwa: Enzymic transfer of glucose. II. Identity of glucotransferase and β-glucosidase. J. of Biochem. (Tokyo) 37, 435 (1950).

    CAS  Google Scholar 

  • Enzymatic transfer of β-d-galactose. J. of Biochem. (Tokyo) 40, 471 (1953).

    Google Scholar 

  • Takaoka, K.: The specific change of iodine reaction on sweet-potato starch caused by some microorganisms. II. The relation between the phenomenon and the amylolytic enzyme. J. Agric. Chem. Soc. Jap. 23, 390 (1950).

    CAS  Google Scholar 

  • Thorsell, W., u. K. Myrbäck: Insoluble saccharase in baker’s yeast. Ark. Kemi (Stockh.) 3, 323 (1951).

    CAS  Google Scholar 

  • Triff, I., and N. Dimofte: The effect of freezing on cigaret tobaccos. Bul. cultivar. fermentar. Tutunului 36, 79 (1947).

    Google Scholar 

  • Veibel, S.: In: The Enzymes. Chemistry and Mechanism of Action. Edited by J. B. Sumner and K. Myrbäck. Vol. 1, Part. 1, p. 583 and p. 621. New York: Academic Press 1950.

    Google Scholar 

  • Veibel, S., C. Møller u. J. Wangel: Investigations on the glycosidases of milk sugar yeast emulsin. Kgl. danske Vidensk. Selsk., Math.-fysiske Medd. 22, No 2 (1945).

    Google Scholar 

  • Vintilescu, J., C. N. Ionescu u. A. Kizyk: Enzymatische Synthesen einiger α-Glukoside. Bul. Soc. Chim. Romania 17, 131 (1935).

    CAS  Google Scholar 

  • Wallenfels, K., u. E. Bernt: Über die gruppenübertragende Wirkung von Disaccharidspaltenden Enzymen. Angew. Chem. 64, 28 (1952).

    Article  CAS  Google Scholar 

  • Wallenfels, K., E. Bernt u. G. Limberg: Isolierung von Lactotriose, Lactobiose und Galaktobiose aus dem enzymatischen Hydrolysat von Lactose. Liebigs Ann. 579, 113 (1953).

    Article  CAS  Google Scholar 

  • Wanner, H., u. U. Leupold: The longitudinal distribution of saccharase activity in the root tip. Ber. Schweiz. bot. Ges. 57, 156 (1947).

    CAS  Google Scholar 

  • Weidenhagen, R.: Zur Frage der enzymatischen Rohrzuckerspaltung. Naturwiss. 16, 654 (1928).

    Article  Google Scholar 

  • Zur Frage der Saccharasespezifität. Z. Ver. dtsch. Zuckerind. 78, 406–418 (1928).

    Google Scholar 

  • Die experimentellen Grundlagen der enzymatischen Rohrzuckerspaltung. Erg. Enzymforsch. 2, 90–103 (1933).

    Google Scholar 

  • Weidenhagen, R., u. A. Renner: Über die Spezifität der Galaktosidase. Z. Ver. dtsch. Zuckerind. 86, 22–56 (1936).

    Google Scholar 

  • Whelan, W. J., and D. M. Jones: β-Methyl fructoside as a substrate in transfructosylation. Biochemie. J. 54, XXXIV (1953).

    Google Scholar 

  • White, J. W., and J. Mäher: Transglucosidation by honey invertase. Arch. of Biochem. a. Biophysics 42, 360 (1953).

    Article  CAS  Google Scholar 

  • α-Maltosyl β-d-fructofuranoside, a trisaccharide enzymatically synthesized from sucrose. J. Amer. Chem. Soc. 75, 1259 (1953).

    Google Scholar 

  • White, L. M., and G. E. Secor: The oligosaccharides formed during the sucrose-invertase reaction. Arch. of Biochem. a. Biophysics 36, 490 (1952).

    Article  CAS  Google Scholar 

  • Wilkes, B. G., and E. T. Palmer: Similarity of the kinetics of invertase action in vivo and in vitro. II. J. Gen. Physiol. 16, 233 (1932).

    Article  PubMed  CAS  Google Scholar 

  • Willstätter, R.: Untersuchungen über Enzyme. Berlin: Springer 1928.

    Google Scholar 

  • Willstätter, R., u. E. Bamann: Trennung von Maltase und Saccharase. Hoppe-Seylers Z. 151, 273 (1926).

    Article  Google Scholar 

  • Willstätter, R., u. W. Grassmann: Freilegung des Invertins aus der Hefe. Biochem. Z. 203, 308 (1928).

    Google Scholar 

  • Willstätter, R., u. R. Kuhn: Über Maßeinheiten der Enzyme. Ber. dtsch. chem. Ges. 56, 509 (1923).

    Article  Google Scholar 

  • Winge, Ö., u. C. Roberts: Relation between the polymeric genes for maltose, raffinose, and sucrose fermentation in yeasts. C. r. Labor. Carlsberg, Ser. Physiol. 25, 141–171 (1952).

    CAS  Google Scholar 

  • Wolfrom, M. L., A.Thompson and T. T. Galkowski: 4-α-Isomaltopyranosyl-d-glucose. J. Amer. Chem. Soc. 73, 4093 (1951).

    Article  CAS  Google Scholar 

  • Wolochow, H., E. W. Ptttman, M. Doudoroff, W. Z. Hassid and H. A. Barker: Preparation of sucrose labeled with C14 in the glucose or fructose component. J. of Biol. Chem. 180, 1237 (1949).

    CAS  Google Scholar 

  • Yasumura, A.: J. Jap. Biochem Soc. 26, 200 (1954).

    Google Scholar 

  • Zechmeister, L., G. Tóth u. M. Bálint: Chromatographie separation of some of the enzymes of emulsin. Enzymologia (Den Haag) 5, 302 (1938).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Gottschalk, A. (1958). The enzymes controlling hydrolytic, phosphorolytic and transfer reactions of the oligosaccharides. In: Åberg, B., et al. Aufbau · Speicherung · Mobilisierung und Umbildung der Kohlenhydrate / Formation · Storage · Mobilization and Transformation of Carbohydrates. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94731-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94731-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94732-2

  • Online ISBN: 978-3-642-94731-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics