The enzymes controlling hydrolytic, phosphorolytic and transfer reactions of the oligosaccharides

Hexosidases without the specific heterosidases
  • Alfred Gottschalk
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 6)


The oligosaccharidases and the transglycosylases occupy a key position in the biological activities of plants because by their action they provide the cells with the simple sugars entering the various pathways involved in the production of energy. They receive their specific substrates either from the breakdown of reserve and structural polysaccharides or directly from the chain of reactions summarized as photosynthesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M., N. K. Richtmyer and C. S. Hudson: Some Enzymes present in highly purified Invertase Preparations; a contribution to the study of fructofuranosidases, galactosidases, glucosidases and mannosidases. J. Amer. Chem. Soc. 65, 1369 (1943).CrossRefGoogle Scholar
  2. Albon, N., D. J. Bell, P. H. Blanchard, D. Gross and J. T. Rundell: Kestose: a trisaccharide formed from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1953, 24.Google Scholar
  3. Anagnostopoulos, C., J. E. Courtois and F. Petek: Transferring action of the α-galactosidase of coffee beans. Bull. Soc. Chim. biol. Paris 36, 1115 (1954).PubMedGoogle Scholar
  4. Antoniani, C.: Osservazioni sulla β-glucosidasi del Sorghum saccharatum. Real. Ist. lombardo Sci. e Lett., Rend. (2) 68, 355–362 (1935).Google Scholar
  5. Aristovskaya, T. V.: Enzyme activity of northern strains of microorganisms. Mikrobiologiya 17, 350 (1948).Google Scholar
  6. Aronson, M.: Transgalactosidation during lactose hydrolysis. Arch. of Biochem a. Biophysics 39, 370 (1952).CrossRefGoogle Scholar
  7. Baba, T.: Über die besonderen Verhältnisse bei der Phosphorylierung von Maltose durch frische untergärige Hefe, Trockenhefe und Mazerationssaft. Biochem. Z. 273, 207 (1934).Google Scholar
  8. Bacon, J. S. D.: Transfructosidation by a Yeast Invertase Preparation. Biochemie. J. 50, XVIII (1952).Google Scholar
  9. The oligosaccharides produced by the action of yeast invertase preparations on sucrose. Biochemie. J. 57, 320 (1954).Google Scholar
  10. Bacon, J. S. D., and D. J. Bell: A new trisaccharide produced from sucrose by mold invertase. J. Chem. Soc. (Lond.) 1953, 2528.Google Scholar
  11. Bacon, J. S. D., and J. Edelman: The action of invertase preparations. Arch. of Biochem. 28, 467 (1950).Google Scholar
  12. Bamann, E., u. K. Myrbäck: Die Methoden der Fermentforschung, Bd. 2. Leipzig: Georg Thieme 1941.Google Scholar
  13. Baranovskii, P.M.: Biochemical processes in sprouting of soybean seeds. Izv. Akad. Nauk. Kazakh. SSSR., Ser. Fiziol. i. Biokhim. Rastenii 1947, No 2, 44.Google Scholar
  14. Barker, S. A., and E. J. Bourne: Oligosaccharides synthesized from maltose by Escherichia coli. J. Chem. Soc. (Lond.) 1952, 209.Google Scholar
  15. Barker, S. A., E. J. Bourne and T. R. Carrington: Aspergillus niger. III. Structure of a trisaccharide synthesized from sucrose. J. Chem. Soc. (Lond.) 1954, 2125.Google Scholar
  16. Barker, S. A., E. J. Bourne, G. C. Hewitt and M. Stacey: Aspergillus niger. IV. Synthesis of β-linked glucosaccharides. J. Chem. Soc. (Lond.) 1955, 3734.Google Scholar
  17. Barker, S. A., E. J. Bourne and M. Stacey: Aspergillus niger. I. The structure of the polyglucosan synthesized by Aspergillus niger 152. J. Chem. Soc. (Lond.) 1953, 3084.Google Scholar
  18. Barker, S. A., and T. R. Carrington: Aspergillus niger. II. Transglycosidation by Aspergillus niger. J. Chem. Soc. (Lond.) 1953, 3588.Google Scholar
  19. Bau, A.: Über ein neues Enzym der Hefe. Chemiker-Ztg 19, 1873–1874 (1895).Google Scholar
  20. Bauer, C. R., and C. L. Gemmill: The heat produced by the enzymic action of the sucrose-invertase and urea-urease systems. Arch. of Biochem. a. Biophysics 35, 110 (1952).CrossRefGoogle Scholar
  21. Bealing, F. J.: Mould Glucosaccharase”: a Fructosidase. Biochemie. J. 55, 93 (1953).Google Scholar
  22. Bell, D. J., and J. Edelman: Disaccharide synthesis following fructose transfer from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1954, 4652.Google Scholar
  23. Berthelot, M.: Über die Produkte der Gärung des Zuckers. C. r. Acad. Sci. Paris 50, 980–984 (1860).Google Scholar
  24. Blanchard, P. H., and N. Albon: The inversion of sucrose; a complication. Arch. of Biochem. 29, 220 (1950).Google Scholar
  25. Bourquelot, E.: C. r. Acad. Sci. Paris 97, 1322 (1883); 116, 826 (1893).Google Scholar
  26. Bourquelot, E., et A. Aubry: Influence de l’acide acétique sur les propriétés synthétisantes et hydrolysantes de la glucosidase α. J. Pharm. et Chim. (7) 12, 15 (1915).Google Scholar
  27. Influence de la soude sur les propriétés synthétisantes et la glucosidase α. J. Pharm. et Chim. (7) 12, 182 (1915).Google Scholar
  28. Synthèse biochim. d’un galactobiose. J. Pharm. et. Chim. (7) 14, 65 (1917).Google Scholar
  29. Krystallisation und Eigenschaften der früher durch biochemische Synthese erhaltenen Galaktobiose. J. Pharm. et Chim. (7) 15, 246–249 (1917).Google Scholar
  30. Synthèse biochim. d’un deuxième galactobiose. J. Pharm. et Chim. (7) 15, 273 (1917).Google Scholar
  31. Bourquelot, E., et M. Bridel: Synthèse biochim. des glucosides d’alcools polyvalents; glucosides α de la glycérine et du glycol. J. Pharm. et Chim. (7) 8, 489, 547 (1913a).Google Scholar
  32. Bourquelot, E., et H. Hérissey: Synthèse biochim. d’un glucoside isomère de la salicine, le salicylglucoside β. J. Pharm. et Chim. (7) 8, 49 (1913b).Google Scholar
  33. Bourquelot, E., H. Hérissey et M. Bridel: Synthesen von α-Glucosiden mit Hilfe von α-Glucosidase, einem in der an der Luft getrockneten, untergärigen Hefe enthaltenen Enzym: α-Methyl- und α-Äthylglucosid. J. Pharm. et Chim. (7) 7, 145–154 (1913c).Google Scholar
  34. Synthèse biochim. des glucosides d’alcools (glucosides α). III. Propylglucoside α et allylglucoside α. J. Pharm. et Chim. (7), 7, 525 (1913c).Google Scholar
  35. Bourquelot, E., H. Hérissey et J. Coirre: Synthèse biochimique d’un sucre du groupe des hexobioses, le gentiobiose. C. r. Acad. Sci. Paris 157, 732 (1913d).Google Scholar
  36. Brown, H. T., u. J. Heron: Über die hydrolytische Wirkung des Pankreas und des Dünndarms. Liebigs Ann. 204, 228 (1880).CrossRefGoogle Scholar
  37. Buchanan, J. G., J. A. Bassham, A. A. Benson, D. F. Broadlay, M. Calvin, L. L. Daus, M. Goodman, P.M.Hayes, V. H. Lynch, L. T. Norris and A.T.Wilson: The rôle of phosphate in the metabolism of photosynthetic organisms. In: A Symposium on Phosphorus Metabolism, vol. II, p. 440. Edited by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Press 1952.Google Scholar
  38. Bunton, C. A., T. A. Lewis, D. R. Llewellyn, H. Tristram and C. A. Vernon: Hydrolysis of methylglucosides. Nature (Lond.) 174, 560 (1954).CrossRefGoogle Scholar
  39. Buston, H. W., and A. Jabbar: Synthesis of β-linked glucosaccharides by extracts of Chaetomium globosum. Biochim. et Biophysica Acta 15, 543 (1954).CrossRefGoogle Scholar
  40. Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladine: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333 (1950).Google Scholar
  41. Caputto, R., L. F. Leloir u. R. E. Trucco: Lactase and lactose fermentation in Saccharomyces fragilis. Enzymologia (Den Haag) 12, 350 (1948).Google Scholar
  42. Cohn, M.: Mechanisms of cleavage of glucose-1-phosphate. J. of Biol. Chem. 180, 771 (1949).Google Scholar
  43. Cohn, M., and J. Monod: Purification and properties of the β-galactosidase (lactase) of Escherichia coli. Biochim. et Biophysica Acta 7, 153 (1951).CrossRefGoogle Scholar
  44. Cohn, M., and A. M. Torriani: Relationships in biosynthesis of the β-galactosidase and Pz proteins in Escherichia coli. Biochim. et Biophysica Acta 10, 280 (1953).CrossRefGoogle Scholar
  45. Courtois, J. E., C. Anagnostopoulos and F. Petek: Action of α-galactosidase on stachyose. Isolation of saccharose and raffinose. Enzymologia (Den Haag) 17, 69 (1954).Google Scholar
  46. Crook, E. M., and B. A. Stone: Formation of oligosaccharides during the enzymic hydrolysis of β-glucosides. Biochemic. J. 55, XXV (1953).Google Scholar
  47. Dam, B. van, J. G. Revallier-Warffemius and L. C. van Dam-Schermerhorn: Preparation of lactase from Saccharomyces fragilis. Netherlands Milk Dairy J. 4, 96 (1950).Google Scholar
  48. Davies, R.: Enzyme formation in Saccharomyces fragilis. I. Invertase and Raffinase. Biochemic. J. 55, 484 (1953).Google Scholar
  49. Dieu, H. A.: Invertase Studies. I. Bull. Soc. chim. Belg. 55, 306 (1947).CrossRefGoogle Scholar
  50. Invertase Studies. II. Bull. Soc. chim. Belg. 55, 327 (1947).Google Scholar
  51. Edelman, J.: Transfer reactions catalysed by some sucrase preparations. Biochemie. J. 57, 22 (1954).Google Scholar
  52. Elander, M., and K. Myrbäck: Isolation of crystalline trehalose after fermentation of glucose by maceration juice. Arch. of Biochem. 21, 249 (1949).Google Scholar
  53. Fischer, E.: Einfluß der Configuration auf die Wirkung der Enzyme. I. Ber. dtsch. chem. Ges. 27, 2985–2993 (1894).CrossRefGoogle Scholar
  54. Einfluß der Configuration auf die Wirkung der Enzyme. II. Ber. dtsch. chem. Ges. 27, 3479–3483 (1894).Google Scholar
  55. Über den Einfluß der Configuration auf die Wirkung der Enzyme. III. Ber. dtsch. chem. Ges. 28, 1429–1438 (1895).Google Scholar
  56. Fischer, E., u. E. F. Armstrong: Synthese einiger neuer Disaccharide. Ber. dtsch. chem. Ges. 35, 3144–3153 (1902).CrossRefGoogle Scholar
  57. Fischer, E. H., u. L. Kohtès: Purification de l’invertase de levure. Helvet. chim. Acta 34, 1123 (1951).CrossRefGoogle Scholar
  58. Fischer, E. H., L. Kohtès u. J. Fellig: Propriétés de l’invertase purifiée. Helvet. chim. Acta 34, 1132 (1951).CrossRefGoogle Scholar
  59. Fitting, C., and M. Doudoroff: Phosphorolysis of maltose by enzyme preparations from Neisseria meningitidis. J. of Biol. Chem. 199, 153 (1952).Google Scholar
  60. French, D.: Structure of Pan’s crystalline trisaccharide. Science (Lancaster, Pa.) 113, 352 (1951).Google Scholar
  61. The raffinose family of oligosaccharides. Adv. Carbohydrate Chem. 9, 149 (1954).Google Scholar
  62. French, D., G. M. Wild and W. J. James: Constitution of stachyose. J. Amer. Chem. Soc. 75, 3664 (1953).CrossRefGoogle Scholar
  63. Fujii, M.: Studies on sugarcane invertase. I. Leaf invertase. J. Agric. Chem. Soc. Jap. 18, 961 (1942).Google Scholar
  64. Studies on sugar-cane invertase. II. Distribution of invertase in the leaves and its enzymic chemical properties. J. Agric. Chem. Soc. Jap. 20, 421 (1944).Google Scholar
  65. Gillespie, J. M., M. A. Jermyn and E. F. Woods: Multiple nature of the enzymes of Aspergillus oryzae and of horse-radish. Enzymes of Aspergillus oryzae. Nature (Lond.) 169, 487 (1952).CrossRefGoogle Scholar
  66. Gilliland, R. B.: A yeast hybrid heterozygotic in four fermentation characters. C. r. Labor. Carlsberg, Ser. Physiol. 24, 347 (1949).Google Scholar
  67. Gottschalk, A.: The proportion of fructo-furanose present in d-fructose solution at equilibrium (0°C). Austral. J.Exper. Biol. a.Med. Sci. 21, 139 (1943).CrossRefGoogle Scholar
  68. The effect of temperature on the fermentation of d-mannose by yeast. Biochem. J. 41, 276 (1947).Google Scholar
  69. Mechanism of enzyme specificity in the domain of carbohydrates. Nature (Lond.) 160, 113 (1947).Google Scholar
  70. “Direct” fermentation of disaccharides by yeast. A critical discussion. Wallerstein Lab. Communications 12, 55 (1949).Google Scholar
  71. Principles underlying enzyme specificity in the domain of carbohydrates. Adv. Carbohydrate Chem. 5, 49 (1950).Google Scholar
  72. α-d-Glucosidases. In: The Enzymes. Chemistry and Mechanism of Action. Vol. I, part. 1, p. 551. Edited by J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.Google Scholar
  73. On the Mechanism of Enzyme Action. Rev. Pure a. Appl. Chem. 3, 179 (1953).Google Scholar
  74. Gross, D.: Paper electrophoresis of the oligosaccharides synthesized from sucrose by yeast invertase. Nature (Lond.) 173, 487 (1954).CrossRefGoogle Scholar
  75. Gross, D., P.H.Blanchard and D. J. Bell: Neo-kestose; a trisaccharide formed from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1954, 1727.Google Scholar
  76. Halvorson, H. O., and S. Spiegelman: The inhibition of enzyme formation by amino acid analogues. J. Bacter. 64, 207 (1952).Google Scholar
  77. Hassid, W. Z.: Biosynthesis of complex saccharides. Contribution to ‘Chemical Pathways of Metabolism’, Vol. I, p. 235–275. Edited by D. M. Greenberg. New York: Academic Press 1954.Google Scholar
  78. Hassid, W. Z., and M. Doudoroff: Synthesis of disaccharides with bacterial enzymes. Adv. Enzymol. 10, 123 (1950).Google Scholar
  79. Hassid, W. Z., M. Doudoroff, A. L. Potter and H. A. Barker: Structure of an enzymatically synthesized reducing disaccharide, d-glucosido-L-arabinose. J. Amer. Chem. Soc. 70, 306 (1948).CrossRefGoogle Scholar
  80. Hattori, S., and T. Siroya: Sugars in the seeds and seedlings of Pinus thunbergi. Bot. Mag. (Tokyo) 64, 137 (1951).Google Scholar
  81. Hehre, E. J.: The biological synthesis of dextran from dextrins. J. of Biol. Chem. 192, 161 (1951).Google Scholar
  82. Hehre, E. J., and A. S. Carlson: Evidence on the constitution of melezitose through degradation to sucrose by bacterial action. Arch. of Biochem. a. Biophysics 36, 158 (1952).CrossRefGoogle Scholar
  83. Helferich, B.: Emulsin. Erg. Enzymforsch. 7, 83–104 (1938).Google Scholar
  84. Enzyme Specificity. In: The Enzymes. Chemistry and Mechnisms of Action. Vol. 1, part. 1, p. 79. Edited by J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.Google Scholar
  85. Helferich, B., S. Demant, J. Goerdeler u. R. Bosse: Über die Carbohydrasen des Gerstenmalzes, das „Malz-Emulsin“. Hoppe-Seylers Z. 283, 179–186 (1948).CrossRefGoogle Scholar
  86. Helferich, B., u. H. Rauch: Zucker-Synthesen, IV. 6-β-d-Galaktosido-d-glucose, ein Beitrag zur Konstitution der Melibiose. Ber. dtsch. chem. Ges. 59, 2655 bis 2657 (1926).CrossRefGoogle Scholar
  87. Helferich, B., u. G. Sparmberg: Krystallisierte 6-β-d-Galaktosido-d-glucose. Ber. dtsch. chem. Ges. 66, 806–807 (1933).CrossRefGoogle Scholar
  88. Helferich, B., u. F. V. Stryk: Methansulfonsäureester in der Zuckergruppe. V. Mitt. Über die Ferment-Spaltung von Trehalose. Ber. dtsch. chem. Ges. 74, 1794–1798 (1941).CrossRefGoogle Scholar
  89. Helferich, B., u. F.Vorsatz: Über Kaffee-Emulsin. Emulsin XXV. Hoppe-Seylers Z. 237, 254–260 (1935).CrossRefGoogle Scholar
  90. Hérissey, H.: Sur l’hydrolyse du méthyle-d-mannoside-α par des ferments solubles. C. r. Acad. Sci. Paris 172, 766–768 (1921).Google Scholar
  91. Hestrin, S.: Specificity of mold maltase. Enzymologia (Den Haag) 8, 193 (1940).Google Scholar
  92. Hestrin, S., and C. C. Lindegren: Carbohydrases in Saccharomyces Haploid Stocks of Defined Genotype. II. Gene-Controlled Induction of Glucosidases by α-Glucosides. Arch. of Biochem. a. Biophysics 38, 317 (1952).CrossRefGoogle Scholar
  93. Hill, K.: Über Luzerneemulsin. Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-phys. Kl. 86, 115–128 (1934).Google Scholar
  94. Hoeckner, E.: Die Rohrzuckerspaltung durch Bacterium coli. Z.Hyg. 129, 519–537 (1949).CrossRefGoogle Scholar
  95. Hofmann, E.: Untersuchungen über Glykoside- und Disaccharide-spaltende Enzyme von Schimmelpilzen. Biochem. Z. 272, 133 (1934a).Google Scholar
  96. Vorkommen von Maltase und Saccharase bei Schizosaccharomyces octosporus (Beijerinck) und deren Trennung. Biochem. Z. 272, 417 (1934b).Google Scholar
  97. Neues zur Frage nach der Spezifität der Glykosidasen, insbesondere bei Schimmelpilzen und Bakterien. Naturwiss. 22, 406–409 (1934c).Google Scholar
  98. Hofmann, E., u. E. Latzko: Einflüsse der Nährstoffe Kali und Stickstoff auf Fermentgehalt und Qualität pflanzlicher Erzeugnisse. Biochem. Z. 321, 476–481 (1951).PubMedGoogle Scholar
  99. Hofmann, E., u. H. Scheck: Über die Trennung von β-Glukosidase und β-Galactosidase bei Milchzuckerhefen. Biochem. Z. 319, 522–528 (1949).Google Scholar
  100. Hogness, D. S., M. Cohn and J. Monod: Studies on the induced synthesis of β-galactosidase in Escherichia coli: The kinetics and mechanism of sulphur incorporation. Biochim. et Biophysica Acta 16, 99 (1955).CrossRefGoogle Scholar
  101. Isaiev, V. J.: The maltase of yeast. J. Inst. Brewing 32, 552 (1926).Google Scholar
  102. Ishii, R., and S. Akagi: Studies on Monilia sitophila. II. Enzymes produced. Hakkô Kôgaku Zasshi (J. Fermentation Technol.) 26, 276 (1948).Google Scholar
  103. Jermyn, M. A.: Fungal Cellulases. VI. Substrate and inhibitor specificity of the β-glucosidase of Stachybotrys atra. Austral. J. Biol. Sci. 8, 577 (1955).Google Scholar
  104. Jermyn, M. A., and R. Thomas: Transferase activity of the β-glucosidase of Aspergillus oryzae. Austral. J. Biol. Sci. 6, 70 (1953).Google Scholar
  105. Kalckar, H. M.: The mechanism of transglycosidation. In: A Symposium on the Mechanism of Enzyme Action, p. 675. Edited by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Press 1954.Google Scholar
  106. Kasparova, S.A., and A. M. Khristoforrova: Biochemical processes in ascertaining the winter hardiness of clover for arctic planting. Biokhimiya 13, 441 (1948).Google Scholar
  107. Kharebava, G. I.: Enzymic processes in a living tea leaf. Biokhimiya Chaĭnago Proízvodstva Sbornik 1946, Nr 5, 86.Google Scholar
  108. Kitahara, K., and M. Kurushima: The diastatic enzyme systems of moulds. I. Comparison of diastatic enzyme systems of several important moulds. Hakkô Kôgaku Zasshi (J. Fermentation Technol.) 27, 1 (1949).Google Scholar
  109. Kobayashi, K.: Sugar-hydrolysing enzymes. VI. Differences between β-glucosidase and β-galactosidase. J. Jap. Biochem. Soc. 18, 41 (1944).Google Scholar
  110. Koppel, J. L., C. J. Porter and B. F. Crocker: Mechanism of the synthesis of enzymes. I. Development of a system suitable for studying this phenomenon. J. Gen. Physiol. 36, 703 (1953).PubMedCrossRefGoogle Scholar
  111. Koshland, D.E.: Stereochemistry and the Mechanism of Enzymatic Reactions. Biol. Rev. 28, 416 (1953).CrossRefGoogle Scholar
  112. Koshland, D. E., and S. S. Stein: Enzyme specificity and enzyme mechanism. Federat.Proc. 12, 233 (1953).Google Scholar
  113. Kuby, S. A., and H. A. Lardy: Purification and kinetics of β-d-galactosidase from Escherichia coli strain K-12. J. Amer. Chem. Soc. 75, 890 (1953).CrossRefGoogle Scholar
  114. Kuhn, R.: Saccharase- und Raffinasewirkung des Invertins. Hoppe-Seylers Z. 125, 28–92 (1923).CrossRefGoogle Scholar
  115. Lederberg, J.: The β-d-galactosidase of Escherichia coli strain K-12. J. Bacter. 60, 381 (1950).Google Scholar
  116. Leloir, L. F., and E. Cabib: The enzymic synthesis of trehalose phosphate. J. Amer. Chem. Soc. 75, 5445 (1953).CrossRefGoogle Scholar
  117. Lester, G.: The β-galactosidase of lactose mutants of Escherichia coli K-12. Arch. of Biochem. a. Biophysics 40, 390 (1952).CrossRefGoogle Scholar
  118. Lindegren, C. C.: The Yeast Cell, its Genetics and Cytology. St. Louis: Educational Publishers 1949.Google Scholar
  119. Lisitsyn, D.I.: Activity of carbohydrase in leaves of “glucoside” plants. Biokhimiya 18, 188 (1953).Google Scholar
  120. Lukes, T. M., and H. J. Phaff: Characteristics of trehalase in Candida tropicalis. Antonie van Leeuwenhoek J. Microbiol. a. Serol. 18, 323 (1952).CrossRefGoogle Scholar
  121. Mandels, G. R.: Invertase of Myrothecium verrucaria spores. Amer. J. Bot. 38, 213 (1951).CrossRefGoogle Scholar
  122. Mehrotra, B. S.: Physiological studies of Phytophthora. I. Enzyme action. J. Indian Bot. Soc. 28, 108 (1949).Google Scholar
  123. Michaelis, L., u. H. Davidsohn: Die Wirkung der H-Ionen auf das Invertin. Biochem. Z. 35, 386 (1911).Google Scholar
  124. Michaelis, L., u. M. L. Menten: Die Kinetik der Invertin Wirkung. Biochem. Z. 49, 333 (1913).Google Scholar
  125. Miwa, T.: Enzymic transfer of sugars. Symposia Enzyme Chem. (Japan) 8, 57 (1953).Google Scholar
  126. Miwa, T., C. Cheng, M. Fujisaki and A. Toishi: The specificity of glucosidases. I. Relations between glucosidases of various origins and β-d-glucosides of various compositions. Acta Phytochim. (Tokyo) 10, 155 (1937).Google Scholar
  127. Miwa, T., K. Takano, K. Mafune and S. Furutani: Glucotransferase. Proc. Japan. Acad. 25, 111 (1949).Google Scholar
  128. Miwa, T., and K. Tanaka: Glycosidases of apricot emulsin. Symposia Enzyme Chem. (Japan) 2, 19 (1949).Google Scholar
  129. Monod, J., G. Cohen-Bazire and M. Cohn: The biosynthesis of β-galactosidase (lactase) by Escherichia coli. Biochim. et Biophysica Acta 7, 585 (1951).CrossRefGoogle Scholar
  130. Monod, J., A. M. Torriani and J. Gribetz: Lactase extract from a stock of mutable Escherichia coli. C. r. Acad. Sci. Paris 227, 315 (1948).Google Scholar
  131. Morita, Y.: β-Xylosidase. J. Jap. Biochem. Soc. 24, 189 (1952).Google Scholar
  132. Myrbäck, K.: α-Glukosidase und Disaccharidspaltung. Hoppe-Seylers Z. 205, 248 (1932).CrossRefGoogle Scholar
  133. Myrbäck, K., u. U. Björklund: Activity-pH-curves of the enzymatic saccharose and raffinose hydrolysis. Ark. Kemi (Stockh.) 4, 567 (1952).Google Scholar
  134. Narayanamurti, D., u. G. M. Verma: Cellulase and invertase from Polystictus sanguineus. The mechanism of wood-protective agents. Holz als Roh- u. Werkstoff 11, 7 (1953).CrossRefGoogle Scholar
  135. Nath, K., and H. N. Rydon: The influence of structure on the hydrolysis of substituted phenyl β-d-glucosides by emulsin. Biochemie. J. 57, 1 (1954).Google Scholar
  136. Nelson, J. M., E. T. Palmer and B. G. Wilkes: Similarity of the kinetics of invertase action in vivo and in vitro. J. Gen. Physiol. 15, 491 (1932).PubMedCrossRefGoogle Scholar
  137. Nelson, J. M., and B. G. Wilkes: Similarity of the kinetics of invertase action in vivo and in vitro. III. J. Gen. Physiol. 16, 571 (1933).PubMedCrossRefGoogle Scholar
  138. Neuberg, C.: Zur Kenntnis der Raffinose. Abbau der Raffinose zu Rohrzucker und d-Galaktose. Biochem. Z. 3, 519–534 (1907).Google Scholar
  139. Neuberg, C., u. E. Hofmann: Über enzymatische Spaltungen der Malto- und Lactobionsäure. Biochem. Z. 252, 434–439 (1932).Google Scholar
  140. Neuberg, C., u. S. Lachmann: Zur Kenntnis der Stachyose. Biochem. Z. 24, 171–177 (1910).Google Scholar
  141. Neuberg, C., and I. Mandl: Invertase. In: The Enzymes. Chemistry and Mechanism of Action. Vol. 1, part. 1, p. 527. Edited by J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.Google Scholar
  142. Nilsson, R., u. F. Alm: On the rôle of adenylpyrophosphatase in alcoholic fermentation and on the occurrence of trehalose during fermentation with maceration juice. Acta chem. scand. (Helsinki) 3, 213 (1949).CrossRefGoogle Scholar
  143. Nishizawa, K., and K. Wakabayashi: Enzymic breakdown of β-cellobioside. I. Specificity of the β-cellobioside-splitting enzymes of apricot and malt. J. Jap. Biochem. Soc. 24, 36 (1952).Google Scholar
  144. Niwa, K.: Purification of β-glucosidase of Aspergillus niger II. J. of Biochem. (Tokyo) 38, 109 (1951).Google Scholar
  145. Oppenheimer, C.: Die Fermente und ihre Wirkungen, 5. Aufl., Bd. 1. Leipzig: Georg Thieme 1925.Google Scholar
  146. Pan, S. C., L. W. Nicholson and P. Kolachov: Isolation of a crystalline trisaccharide from the unfermentable carbohydrate produced enzymically from maltose. J. Amer. Chem. Soc. 73, 2547 (1951).CrossRefGoogle Scholar
  147. Enzymic synthesis of oligosaccharides: A transglycosidation. Arch. of Biochem. a. Biophysics 42, 406 (1953).Google Scholar
  148. Pazur, J. H.: Transfructosidation reactions of an enzyme of Aspergillus oryzae. J. of Biol. Chem. 199, 217 (1952).Google Scholar
  149. The mechanism of enzymatic synthesis of galactosyl oligosaccharides. J. of Biol. Chem. 208, 439 (1954).Google Scholar
  150. Pazur, J. H., and D. French: The action of transglucosidase of Aspergillus oryzae on maltose. J. of Biol. Chem. 196, 265 (1952).Google Scholar
  151. Peat, S., W. J. Whelan and K. A. Hinson: Synthetic action of almond emulsin. Nature (Lond.) 170, 1056 (1952).CrossRefGoogle Scholar
  152. Pigman, W. W.: Action of almond emulsin on the phenyl glycosides of synthetic sugars and on β-thiophenyl-d-glucoside J. Res. Nat. Bur. Stand. 26, 197–204 (1941).Google Scholar
  153. Pigman, W. W.: Specificity, classification and mechanism of action of the glycosidases. Adv. Enzymol. 4, 41 (1944).Google Scholar
  154. Pigman, W. W., and R. M. Goepp: Chemistry of the Carbohydrates. New York: Academic Press 1948.Google Scholar
  155. Pringsheim, H., u. J. Leibowitz: Über Reversionssynthesen: I. Die Wirkung der Hefemaltase. Ber. dtsch. chem. Ges. 57, 1576 (1924).CrossRefGoogle Scholar
  156. Purves, C.B., and C. S. Hudson: Analysis of γ-methyl fructoside mixtures by means of invertase. I. J. Amer. Chem. Soc. 56, 702 (1934).CrossRefGoogle Scholar
  157. Analysis of γ-methyl fructoside mixtures by means of invertase. IV. Behaviour of sucrose in methanol containing hydrogen chloride. J. Amer. Chem. Soc. 56, 1973 (1934).Google Scholar
  158. Putman, E. W., C. Fitting Litt and W. Z. Hassld: The structure of d-glucosyl-d-xylose synthesized by maltose phosphorylase. J. Amer. Chem. Soc. 77, 4351 (1955).CrossRefGoogle Scholar
  159. Rabaté, J.: Sur l’hydrolyse du salicoside par la poudre fermentaire de feuilles de Salix purpurea et sur quelques phénomènes qui en dérivent. Bull. Soc. chim. biol. Paris 17, 572 (1935).Google Scholar
  160. Roberts, H. R., and E. F. Mc Farren: The Chromatographie observation of oligosaccharides formed during the lactase hydrolysis of lactose. J. Dairy Sci. 36, 620 (1953).CrossRefGoogle Scholar
  161. The formation of oligosaccharides during the lactase hydrolysis of lactose. Arch. of Biochem. a. Biophys. 43, 233 (1953).Google Scholar
  162. Robinson, R., and W. T. J. Morgan: Trehalose monophosphoric ester isolated from the products of fermentation of sugars with dried yeast. Biochemie. J. 22, 1277 (1928).Google Scholar
  163. Roy, D. K., and M. K. Roy: Amylases of butyl organisms. Science a. Culture (India) 18, 339 (1953).Google Scholar
  164. Sadasivan, V.: The phosphatases in coconut (Cocos nucifera). Arch. of Biochem. 30, 159 (1951).Google Scholar
  165. Saksena, R. K., and S. K. Bose: Enzymes of two water moulds. J. Indian Bot. Soc. 23, 108 (1944).Google Scholar
  166. Saroja, K., R. Venkataraman and K. V. Gibi: Transglucosidation in Penicillium chrysogenum Q-176. Biochemie. J. 60, 399 (1955).Google Scholar
  167. Sisakyan, N.M., and A.M. Kobyakova: Enzymic activity of protoplasmic structures. Biokhimiya 14, 86 (1949).Google Scholar
  168. Formation and movement of enzymes in living organisms. Biokhimiya 16, 292 (1951).Google Scholar
  169. Type of union of enzymes with the protein complex of plastids. Biokhimiya 17, 368 (1952).Google Scholar
  170. Sizer, I. W.: Sucrose inversion by baker’s yeast as a function of temperature. J. Gen. Physiol. 21, 695 (1938).PubMedCrossRefGoogle Scholar
  171. Inactivation of invertase by tyrosinase. Science (Lancaster, Pa.) 108, 335 (1948).Google Scholar
  172. Sosa-Bourdouil, C.: The enzymic activity of the antherozoids and the ovules of Fucus vesiculosus L. Bull. mus. nat. hist. nat. (Paris) 18, 142 (1946).Google Scholar
  173. Enzymic activity of the inflorescences of Ginkgo biloba in the course of development. C. r. Acad. Sci. Paris 224, 1651 (1947).Google Scholar
  174. Spiegelman, S., M. Sussman and B. Taylor: Isolation and characterization of two adaptive enzymes formed by yeast in response to maltose. Federat. Proc. 9, 120 (1950).Google Scholar
  175. Stodola, F. H., H. J. Koepsell and E. S. Sharpe: A new disaccharide formed by Leuconostoc mesenteroides. J. Amer. Chem. Soc. 74, 3202 (1952).CrossRefGoogle Scholar
  176. Sumner, J. B., and S. F. Howell: Method for determination of saccharase activity. J. of Biol. Chem. 108, 51 (1935).Google Scholar
  177. Sumner, J. B., and K. Myrbäck: The Enzymes. Chemistry and Mechanism of Action. New York: Academic Press 1950.Google Scholar
  178. Sumner, J. B., u. D. J. O’Kane: The chemical nature of yeast saccharase. Enzymologia (Den Haag) 12, 251 (1948).Google Scholar
  179. Takano, K., and T. Miwa: Enzymic transfer of glucose. II. Identity of glucotransferase and β-glucosidase. J. of Biochem. (Tokyo) 37, 435 (1950).Google Scholar
  180. Enzymatic transfer of β-d-galactose. J. of Biochem. (Tokyo) 40, 471 (1953).Google Scholar
  181. Takaoka, K.: The specific change of iodine reaction on sweet-potato starch caused by some microorganisms. II. The relation between the phenomenon and the amylolytic enzyme. J. Agric. Chem. Soc. Jap. 23, 390 (1950).Google Scholar
  182. Thorsell, W., u. K. Myrbäck: Insoluble saccharase in baker’s yeast. Ark. Kemi (Stockh.) 3, 323 (1951).Google Scholar
  183. Triff, I., and N. Dimofte: The effect of freezing on cigaret tobaccos. Bul. cultivar. fermentar. Tutunului 36, 79 (1947).Google Scholar
  184. Veibel, S.: In: The Enzymes. Chemistry and Mechanism of Action. Edited by J. B. Sumner and K. Myrbäck. Vol. 1, Part. 1, p. 583 and p. 621. New York: Academic Press 1950.Google Scholar
  185. Veibel, S., C. Møller u. J. Wangel: Investigations on the glycosidases of milk sugar yeast emulsin. Kgl. danske Vidensk. Selsk., Math.-fysiske Medd. 22, No 2 (1945).Google Scholar
  186. Vintilescu, J., C. N. Ionescu u. A. Kizyk: Enzymatische Synthesen einiger α-Glukoside. Bul. Soc. Chim. Romania 17, 131 (1935).Google Scholar
  187. Wallenfels, K., u. E. Bernt: Über die gruppenübertragende Wirkung von Disaccharidspaltenden Enzymen. Angew. Chem. 64, 28 (1952).CrossRefGoogle Scholar
  188. Wallenfels, K., E. Bernt u. G. Limberg: Isolierung von Lactotriose, Lactobiose und Galaktobiose aus dem enzymatischen Hydrolysat von Lactose. Liebigs Ann. 579, 113 (1953).CrossRefGoogle Scholar
  189. Wanner, H., u. U. Leupold: The longitudinal distribution of saccharase activity in the root tip. Ber. Schweiz. bot. Ges. 57, 156 (1947).Google Scholar
  190. Weidenhagen, R.: Zur Frage der enzymatischen Rohrzuckerspaltung. Naturwiss. 16, 654 (1928).CrossRefGoogle Scholar
  191. Zur Frage der Saccharasespezifität. Z. Ver. dtsch. Zuckerind. 78, 406–418 (1928).Google Scholar
  192. Die experimentellen Grundlagen der enzymatischen Rohrzuckerspaltung. Erg. Enzymforsch. 2, 90–103 (1933).Google Scholar
  193. Weidenhagen, R., u. A. Renner: Über die Spezifität der Galaktosidase. Z. Ver. dtsch. Zuckerind. 86, 22–56 (1936).Google Scholar
  194. Whelan, W. J., and D. M. Jones: β-Methyl fructoside as a substrate in transfructosylation. Biochemie. J. 54, XXXIV (1953).Google Scholar
  195. White, J. W., and J. Mäher: Transglucosidation by honey invertase. Arch. of Biochem. a. Biophysics 42, 360 (1953).CrossRefGoogle Scholar
  196. α-Maltosyl β-d-fructofuranoside, a trisaccharide enzymatically synthesized from sucrose. J. Amer. Chem. Soc. 75, 1259 (1953).Google Scholar
  197. White, L. M., and G. E. Secor: The oligosaccharides formed during the sucrose-invertase reaction. Arch. of Biochem. a. Biophysics 36, 490 (1952).CrossRefGoogle Scholar
  198. Wilkes, B. G., and E. T. Palmer: Similarity of the kinetics of invertase action in vivo and in vitro. II. J. Gen. Physiol. 16, 233 (1932).PubMedCrossRefGoogle Scholar
  199. Willstätter, R.: Untersuchungen über Enzyme. Berlin: Springer 1928.Google Scholar
  200. Willstätter, R., u. E. Bamann: Trennung von Maltase und Saccharase. Hoppe-Seylers Z. 151, 273 (1926).CrossRefGoogle Scholar
  201. Willstätter, R., u. W. Grassmann: Freilegung des Invertins aus der Hefe. Biochem. Z. 203, 308 (1928).Google Scholar
  202. Willstätter, R., u. R. Kuhn: Über Maßeinheiten der Enzyme. Ber. dtsch. chem. Ges. 56, 509 (1923).CrossRefGoogle Scholar
  203. Winge, Ö., u. C. Roberts: Relation between the polymeric genes for maltose, raffinose, and sucrose fermentation in yeasts. C. r. Labor. Carlsberg, Ser. Physiol. 25, 141–171 (1952).Google Scholar
  204. Wolfrom, M. L., A.Thompson and T. T. Galkowski: 4-α-Isomaltopyranosyl-d-glucose. J. Amer. Chem. Soc. 73, 4093 (1951).CrossRefGoogle Scholar
  205. Wolochow, H., E. W. Ptttman, M. Doudoroff, W. Z. Hassid and H. A. Barker: Preparation of sucrose labeled with C14 in the glucose or fructose component. J. of Biol. Chem. 180, 1237 (1949).Google Scholar
  206. Yasumura, A.: J. Jap. Biochem Soc. 26, 200 (1954).Google Scholar
  207. Zechmeister, L., G. Tóth u. M. Bálint: Chromatographie separation of some of the enzymes of emulsin. Enzymologia (Den Haag) 5, 302 (1938).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Alfred Gottschalk

There are no affiliations available

Personalised recommendations