Advertisement

Abstract

The properties and reactions of the oligosaccharides are best understood by considering them as substituted monosaccharides. It has been noted that the potential carbonyl group of a monosaccharide can react with alcohol functions to form anhydro sugars (glycosans), true acetals, or glycosides, depending on whether the acetal formation is intramolecular, intermolecular, or both (p. 21). The normal glycosides, with an alkyl or aryl aglycon, may be designated as heterosides. When the glycosidic radical is also a monosaccharide, the product would be a disaccharide or holoside.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Albon, N., D.J. Bell, P. H. Blanchard, D. Gross and J. T. Rundell: Kestose: A trisaccharide formed from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1953, 24–27.Google Scholar
  2. Andrews, P., and J. K. N. Jones: [1] The isolation of oligosaccharides from gums and mucilages. Part II. J. Chem. Soc. (Lond.) 1954, 1724–1726.Google Scholar
  3. [2] The isolation of oligosaccharides from gums and mucilages. Part III. Golden apple gum. J. Chem. Soc. (Lond.) 1954, 4134–4138.Google Scholar
  4. [3] The isolation of oligosaccharides from gums and mucilages. Part IV. The isolation of 3-O-β-l-arabopyranosyl-l-arabinose from lemon gum. J. Chem. Soc. (Lond.) 1955, 583–584.Google Scholar
  5. Bächli, P., and E. G. V. Percival: The synthesis of laminaribiose (3-β-d-glucosyl d-glucose) and proof of its identity with laminaribiose isolated from laminarin. J. Chem. Soc. (Lond.) 1952, 1243–1246.Google Scholar
  6. Barker, S. A., E. J. Bourne and T. R. Carrington: [1] Studies of Aspergillus niger. Part III. The structure of a trisaccharide synthesized from sucrose. J. Chem. Soc. (Lond.) 1954, 2125–2129.Google Scholar
  7. Barker, S. A., E. J. Bourne and M. Stagey: [2] Studies of Aspergillus niger. Part I. The structure of the polyglucosan synthesized by Aspergillus niger. J. Chem. Soc. (Lond.) 1953, 3084–3090.Google Scholar
  8. Barker, S. A., E. J. Bourne, M. Stagey and D. H. Whiffen: [3] Infrα-red spectra of carbohydrates. Part I. Some derivatives of d-glucopyranose. J. Chem. Soc. (Lond.) 1954, 171–176.Google Scholar
  9. Barry, V. C.: Hydrolysis of laminarin. Isolation of a new glucose dissaccharide. Sci. Proc. Roy. Dublin Soc. 22, 423–429 (1941).Google Scholar
  10. Bates, F. J., and Associates: Polarimetry, saccharimetry and the sugars. Washington: United States Government Printing Office. 1942.Google Scholar
  11. Charlson, A. J., J. R. Nunn and A. M. Stephen: [1] The composition of Acacia cyanophylla gum. J. Chem. Soc. (Lond.) 1955, 269–273.Google Scholar
  12. [2] Acacia karroo gum. J. Chem. Soc. (Lond.) 1955, 1428–1431.Google Scholar
  13. Evans, W. L., D.D. Reynolds and E. A. Talley: The synthesis of oligosaccharides. Adv. Carbohydrate Chem. 6, 27–81 (1951).CrossRefGoogle Scholar
  14. French, D.: [1] The raffinose family of oligosaccharides. Adv. Carbohydrate Chem. 9, 149–184 (1954).CrossRefGoogle Scholar
  15. [2] Isolation and identification of planteose from tobacco seeds. J. Amer. Chem. Soc. 77, 1024–1025 (1955).Google Scholar
  16. Gilbert, V. E., F. Smith and M. Stacey: A constitutional synthesis of cellobiose and gentiobiose. J. Chem. Soc. (Lond.) 1946, 622–625.Google Scholar
  17. Gill, R. E., E. L. Hirst and J. K. N. Jones: Constitution of the mucilage from the bark of Ulmus fulva (slippery elm mucilage). Part I. The aldobionic acid obtained by hydrolysis of the mucilage. J. Chem. Soc. (Lond.) 1939, 1469–1471.Google Scholar
  18. Gross, D., P. H. Blanchard and D. J. Bell: A trisaccharide formed from sucrose by yeast invertase. J. Chem. Soc. (Lond.) 1954, 1727–1730.Google Scholar
  19. Harding, T. S.: The source of rare sugars IX. History of trehalose, its discovery and methods of preparation. Sugar 25, 476–477 (1923).Google Scholar
  20. Haskins, W. T., R. M. Hann and C. S. Hudson: Syntheses of epi-lactose and lactose. J. Amer. Chem. Soc. 64, 1852–1856 (1942).CrossRefGoogle Scholar
  21. Hassid, W. Z., and M. Doudoroff: Enzymatic synthesis of sucrose and other disaccharides. Adv. Carbohydrate Chem. 5, 29–48 (1950).CrossRefGoogle Scholar
  22. Haworth, W. N.: [1] Organic chemistry. Part I. Aliphatic division. Ann. Rep. Progr. Chem. 24, 61–105 (1927).CrossRefGoogle Scholar
  23. Haworth, W. N., and W. J. Hickinbottom: [2] Synthesis of anew disaccharide, neotrehalose. J. Chem. Soc. (Lond.) 1931, 2847–2850.Google Scholar
  24. Hehre, E. J.: The substituted-sucrose structure of melezitose. Adv. Carbohydrate Chem. 8, 277–290 (1953).CrossRefGoogle Scholar
  25. Heidelberger, M., and W. F. Goebel: The soluble specific substance of Pneumococcus. V. On the chemical nature of the aldobionic acid from the specific polysaccharide of type III Pneumococcus. J. of Biol. Chem. 74, 613–618 (1927).Google Scholar
  26. Helferich, B., u. H. Bredereck: [1] Zuckersynthesen. VIII. Liebigs Ann. 465, 166–184 (1928).CrossRefGoogle Scholar
  27. Helferich, B., u. W. Klein: [2] Zur Synthese von Disacchariden. IV. Zweei Tetra-acetyl-β-d-glucosen. Liebigs Ann. 450, 219–229 (1926).CrossRefGoogle Scholar
  28. Hill, A. C.: Reversible zymohydrolysis. J. Chem. Soc. (Lond.) 1898, 634–658.Google Scholar
  29. Hirst, E. L., and A. S. Berlin: The gum of Acacia pycnantha. J. Chem. Soc. (Lond.) 1954, 2622–2627.Google Scholar
  30. Hotchkiss, R. D., and W. F. Goebel: Chemo-immunological studies on the soluble specific substance of Pneumococcus. III. The structure of the aldobionic acid from the type III polysaccharide. J. of Biol. Chem. 121, 195–203 (1937).Google Scholar
  31. Hough, L., J. K. N. Jones and W. H. Wadman: Quantitative analysis of mixtures of sugars by the method of partition chromatography. Part IV. The separation of sugars and their methylated derivatives on columns of powdered cellulose. J. Chem. Soc. (Lond.) 1949, 2511–2516.Google Scholar
  32. Hudson, C. S.: [1] The inversion of cane sugar by invertase. J. Amer. Chem. Soc. 30, 1160–1166, 1564–1583 (1908); 31, 655–664 (1909).CrossRefGoogle Scholar
  33. [2] Some numerical relations among the rotatory powers of the compound sugars. J. Amer. Chem. Soc. 38, 1566–1575 (1916).Google Scholar
  34. [3] The structure of turanose. J. Org. Chem. 9, 470–476 (1944).Google Scholar
  35. [4] Melezitose and turanose. Adv. Carbohydrate Chem. 2, 1–36 (1946).Google Scholar
  36. Jackson, E. L., and C. S. Hudson: The periodic acid oxidation of α,α-trehalose. J. Amer. Chem. Soc. 61, 1530–1532 (1939).CrossRefGoogle Scholar
  37. Jackson, J., and F. Smith: The constitution of arabic acid. Part IV. The formation of 3-galactosidogalactose by hydrolysis of degraded arabic acid. J. Chem. Soc. (Lond.) 1940, 79–82.Google Scholar
  38. Jones, J. K. N., and W. W. Reid: The structure of the oligosaccharides produced by the enzymic breakdown of pectic acid. J. Chem. Soc. (Lond.) 1954, 1361–1365.Google Scholar
  39. Lemieux, R. U., and G. Huber: A chemical synthesis of sucrose. J. Amer. Chem. Soc. 75, 4118 (1953).CrossRefGoogle Scholar
  40. Levi, L, and C. B. Purves: The structure and configuration of sucrose. Adv. Carbohydrate Chem. 4, 1–35 (1949).CrossRefGoogle Scholar
  41. Linstead, R. P., A. Rutenberg, W. G. Dauben and W. L. Evans: The stable form of sucrose octaacetate. J. Amer. Chem. Soc. 62, 3260–3263 (1940).CrossRefGoogle Scholar
  42. Mc Closkey, C. M., and G. H. Coleman: The preparation of β-primverose heptaacetate and β-vicianose heptaacetate. J. Amer. Chem. Soc. 65, 1778–1780 (1943).CrossRefGoogle Scholar
  43. Mc Neely, W. H., W. W. Binkley and M. L. Wolfrom: Separation of sugar acetates by chromatography. J. Amer. Chem. Soc. 67, 527–529 (1945).CrossRefGoogle Scholar
  44. Pan, S. C., L. W. Nicholson and P. Kolachov: [1] Isolation of a crystalline trisaccharide from the unfermentable carbohydrate produced enzymically from maltose. J. Amer. Chem. Soc. 73, 2547–2550 (1951).CrossRefGoogle Scholar
  45. [2] Enzymic synthesis of oligosaccharides—a transglycosidation. Arch. of Biochem. a. Biophysics 42, 406–420 (1953).Google Scholar
  46. Pazur, J. H., and A. L. Gordon Studies on inulin. The preparation and properties of inulobiose. J. Amer. Chem. Soc.: 3458–3460 (1953).Google Scholar
  47. Peat, S., W. J. Whelan and K. A. Hinson: [1] Synthetic action of almond emulsin. Nature (Lond.) 170, 1056–1057 (1952).CrossRefGoogle Scholar
  48. [2] The enzymic polymerization of glucose. Chem. a. Ind. 1955, 385.Google Scholar
  49. Purves, C. B., and C. S. Hudson: The analysis of γ-fructoside mixtures by means of invertase. V. Methylated and acetylated derivatives of crystalline α-methyl- and α-benzyl-fructofuranoside. J. Amer. Chem. Soc. 59, 49–56 (1937).CrossRefGoogle Scholar
  50. Rabaté, J.: Etude du sophorose. Bull. Soc. chim. France 1940, 565–569.Google Scholar
  51. Richter, D.: Anthraquinone colouring matters: ruberythric acid. J. Chem. Soc. (Lond.) 1936, 1701–1703.Google Scholar
  52. Richter, F.: Kohlenhydrate. Teil I: Monosaccharide und Oligosaccharide. Beilsteins Handbuch der Organischen Chemie. Berlin: Springer 1938.Google Scholar
  53. Schlubach, H. H., u. K. Maurer: Synthesen von Polysacchariden, L: Synthese einer Iso-trehalose. Ber. dtsch. chem. Ges. 58, 1178–1184 (1925).CrossRefGoogle Scholar
  54. Smith, F.: The constitution of arabic acid. Part I. The isolation of 3-d-galactosido-l-arabinose. J. Chem. Soc. (Lond.) 1939, 744–753.Google Scholar
  55. Thompson, A., K. Anno, M. L. Wolfrom and M. Inatome: [1] Acid reversion products from d-glucose. J. Amer. Chem. Soc. 76, 1309–1311 (1954).CrossRefGoogle Scholar
  56. Thompson, A., and M. L. Wolfrom: [2] Degradation of amylopectin to panose. J. Amer. Chem. Soc. 73, 5849–5850 (1951).CrossRefGoogle Scholar
  57. [3] The structure of maltotriose. J. Amer. Chem. Soc. 74, 3612–3614 (1952).Google Scholar
  58. Thompson, A., M. L. Wolfrom and E. J. Quinn: [4] Acid reversion in relation to isomaltose as a starch hydrolytic product. J. Amer. Chem. Soc. 75, 3003–3004 (1953).CrossRefGoogle Scholar
  59. Tollens, B., u. H. Elsner: Kurzes Handbuch der Kohlenhydrate. Leipzig: Johann Ambrosius Barth 1953.Google Scholar
  60. Wehmer, C.: Die Pflanzenstoffe, 2. Aufl. Jena: Gustav Fischer 1929–1935.Google Scholar
  61. Weissmann, B., and K. Meyer: The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord. J. Amer. Chem. Soc. 76, 1753–1757 (1954).CrossRefGoogle Scholar
  62. Whistler, R. L., and H. E. Conrad: [1] A crystalline galactobiose from acid hydrolysis of okra mucilage. J. Amer. Chem. Soc. 76, 1673–1674 (1954).CrossRefGoogle Scholar
  63. [2] 2-O-(d-Gaiactopyranosyluronic acid)-l-rhamnose from okra mucilage. J. Amer. Chem. Soc. 76, 3544–3546 (1954).Google Scholar
  64. Whistler, R. L., H. E. Conrad and L. Hough: [3] 2-O-(4-O-Methyl-α-d-glucopyranosyluronic acid)-d-xylose from hemicellulose-B of corn cob. J. Amer. Chem. Soc. 76, 1668–1670 (1954).CrossRefGoogle Scholar
  65. Whistler, R. L., and J. H. Duffy: [4] Maltopentaose and crystalline octadeca-O-acetylmaltopentaitol J. Amer. Chem. Soc. 77, 1017–1019 (1955).CrossRefGoogle Scholar
  66. Whistler, R. L., and D. F. Durso: [5] Chromatographic separation of sugars on charcoal. J. Amer. Chem. Soc. 72, 677–679 (1950).CrossRefGoogle Scholar
  67. [6] A new crystalline trisaccharide from partial acid hydrolysis of guaran and the structure of guaran. J. Amer. Chem. Soc. 74, 5140–5141 (1952).Google Scholar
  68. Whistler, R. L., and J. L. Hickson: [7] Maltotetraose and crystalline pentadecaacetylmaltotetraitol. J. Amer. Chem. Soc. 76, 1671–1673 (1954).CrossRefGoogle Scholar
  69. Whistler, R. L., and L. Hough: [8] Two further aldobiuronic acids from hemicellulose-B of corn cob. J. Amer. Chem. Soc. 75, 4918–4919 (1953).CrossRefGoogle Scholar
  70. Whistler, R. L., and D. I. Mc Gilvray: [9] Chemistry of the carbohydrates. Annual Rev. Biochem. 23, 79–98 (1954).CrossRefGoogle Scholar
  71. [10] 2-O-α-d-Xylopyranosyl-l-arabinose from hemicellulose-B of corn cob. J. Amer. Chem. Soc. 77, 1884–1885 (1955).Google Scholar
  72. [11] An aldotriuronic acid from hemicellulose-B of corn cob. J. Amer. Chem. Soc. 77, 2212–2213 (1955).Google Scholar
  73. Whistler, R. L., and C. G. Smith: [12] A crystalline mannotriose from the enzymic hydrolvsis of guaran. J. Amer. Chem. Soc. 74, 3795–3796 (1952).CrossRefGoogle Scholar
  74. Whistler, R. L., and C.-C. Tu: [13] Crystalline xylobiose and xylotriose. J. Amer. Chem. Soc. 73, 1389–1390 (1951).CrossRefGoogle Scholar
  75. [14] Isolation and properties of a series of crystalline oligosaccharides from xylan. J. Amer. Chem. Soc. 74, 3609–3612 (1952).Google Scholar
  76. [15] Crystalline xyloheptaose. J. Amer. Chem. Soc. 75, 645–647 (1953).Google Scholar
  77. White jr., J. W., and J. Maher: α-Maltosyl β-d-fructofuranoside, a trisaccharide enzymically synthesized from sucrose. J. Amer. Chem. Soc. 75, 1259–1260 (1953).CrossRefGoogle Scholar
  78. Wolfrom, M. L.: [1] Carbohydrates. I. Organic chemistry, H. Gilman, ed., 1st Edit., vol. 2, pp. 1399–1476. New York: John Wiley & Sons 1938.Google Scholar
  79. Wolfrom, M. L., and J. C. Dacons: [2] The polymer-homologous series of oligosaccharides from cellulose. J. Amer. Chem. Soc. 74, 5331–5333 (1952).CrossRefGoogle Scholar
  80. Wolfrom, M. L., L. W. Georges and I. L. Miller: [3] Crystalline derivatives of isomaltose. J. Amer. Chem. Soc. 71, 125–127 (1949).CrossRefGoogle Scholar
  81. Wolfrom, M. L., and F. Shafizadeh: [4] An evaluation of Hudson’s classical studies on the configuration of sucrose. J. Org. Chem. 21, 88–89 (1956).CrossRefGoogle Scholar
  82. Wolfrom, M. L., and A. Thompson: [5] Degradation of amvlopectin to nigerose. J. Amer. Chem. Soc. 77, 6403 (1955).CrossRefGoogle Scholar
  83. Zemplén, G., u. A. Gerecs: Konstitution und Svnthese der Rutinose, der Biose des Rutins. Ber. dtsch. chem. Ges. 68, 1318–1321 (1935).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • F. Shafizadeh
  • M. L. Wolfrom

There are no affiliations available

Personalised recommendations