Skip to main content
  • 249 Accesses

Abstract

The carbohydrates are primarily the product of photosynthetic activity in plants1. In this process the green plants capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to CO2) carbon compounds, chiefly carbohydrates. The over-all reaction of the basic process of photosynthesis as it occurs in green plants is given by the classical equation in which CO2 and water are taken up by the plant and reduced to carbohydrate with the evolution of oxygen:

$${\rm{C}}{{\rm{O}}_2} + {{\rm{H}}_2}{\rm{O}}\mathop {\rightleftharpoons} \limits_{ - \mathop {{\rm{energy}}}\limits_{{\rm{respiration}}} }^{\mathop {{\rm{photosynthesis}}}\limits_{ + hv} } {{\rm{O}}_2} + ({\rm{C}}{{\rm{H}}_2}{\rm{O}}){\rm{x}}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Albaum, H. G., M. Ogur and A. Hirshfeld: Isolation of adenosine triphosphate from plant tissue. Federat. Proc. 8, 179 (1949).

    Google Scholar 

  • Axelrod, B., and R. S. Bandurski: Oxidative metabolism of hexose phosphates in higher plants. Federat. Proc. 11, 182 (1952).

    Google Scholar 

  • Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in plants. J. of Biol. Chem. 202, 619–634 (1953).

    CAS  Google Scholar 

  • Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. Chem. Soc. 76, 1760–1770 (1954).

    Article  CAS  Google Scholar 

  • Bean, R. C.: Carbohydrate Metabolism in a Marine Alga. Doctorate Thesis, University of California, Berkeley, 1954.

    Google Scholar 

  • Benson, A. A.: Photosynthesis: First reactions. J. Chem. Education 31, 484–487 (1954).

    Article  CAS  Google Scholar 

  • Benson, A. A., J. A. Bassham and M. Calvin: Sedoheptulose in photosynthesis by plants. J. Amer. Chem. Soc. 73, 2970 (1951).

    Article  CAS  Google Scholar 

  • Benson, A. A., and M. Calvin: The path of carbon in photosynthesis. III. Cold Spring Harbor Symp. Quant. Biol. 13, 6–10 (1948).

    Article  CAS  Google Scholar 

  • Respiration and Photosynthesis. J. of Exper. Bot. 1, 63–68 (1950).

    Google Scholar 

  • Benson, A. A., M. Calvin, V. A. Haas, S. Aronoff, A. G. Hall, J. A. Bassham and J. W. Weigl: In J. Frank and W. E. Looms, Photosynthesis in Plants, p. 381–401. Ames: Iowa State College Press 1949.

    Google Scholar 

  • Burkard, J., u. C. Neuberg: Zur Frage nach der Entstehung des Rohrzuckers. Biochem. Z. 270, 229–234 (1934).

    Google Scholar 

  • Calvin, M., and A. A. Benson: Path of carbon in photosynthesis. IV. The identity and sequence of intermediates in sucrose synthesis. Science (Lancaster, Pa.) 109, 140–142 (1949).

    CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladini: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333–350 (1950).

    CAS  Google Scholar 

  • Cardini, C. E., A. C. Paladini, R. Caputto and L. F. Leloir: Uridine diphosphate glucose: The coenzyme of the galactose-glucose phosphate isomerization. Nature (Lond.) 165, 191–192 (1950).

    Article  CAS  Google Scholar 

  • Cecil, R., and A. G. Ogston: The use of glucose oxidase (Notatin) for determination of glucose in biological material and for study of glucose-producing systems by manometric methods. Biochemic. J. 42, 229–238 (1948).

    CAS  Google Scholar 

  • Cohen, S. S.: Phosphorus Metabolism, vol. I, p. 148–158. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Coulthard, C. E., R. Michaelis, W. F. Short, G. Sykes, G. E. H. Skirmshire, A. F. B. Standfast, J. H. Birkinshaw and H. Raistrick: Notatin — an antibacterial glucose-aerodehydrogenase from Penicillium notatum and Penicillium resticulosum. Biochemic. J. 38, 24 (1945).

    Google Scholar 

  • de Moss, R. D., R. C. Bard and I. C. Gunsalus: The mechanism of heterolactic fermentation: a new route of ethanol formation. J. Bacter, 62, 499–511 (1951).

    CAS  Google Scholar 

  • Dickens, F.: Oxidation of phosphohexonate and pentosephosphoric acid by yeast enzymes. Biochemic. J. 32, 1626–1636, 1645–1653 (1938).

    CAS  Google Scholar 

  • Dickens, F., and G. E. Glock: Direct oxidation of glucose-6-phosphate, 6-phosphogluconate and pentose-5-phosphate by enzymes of animal origin. Biochemic. J. 50, 81–95 (1952).

    Google Scholar 

  • Edelman, J., V. Ginsburg and W. Z. Hassid: Conversion of monosaccharides to sucrose and cellulose in wheat seedlings. J. of Biol. Chem., 213, 843–854 (1955).

    CAS  Google Scholar 

  • Forrest, R. S., L. Hough and J. K. N. Jones: Enzymatic synthesis of ketopentose. Chem. a. Ind. 1951, 1093.

    Google Scholar 

  • Gibbs, M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in pea plant. Nature (Lond.) 170, 164–165 (1952).

    Article  CAS  Google Scholar 

  • Oxidation of hexose phosphate and pentose phosphate by cellfree extracts of pea leaves. Plant Physiol. 29, 34–39 (1954).

    Google Scholar 

  • Gibbs, M., and R. D. de Moss: Ethanol formation in Pseudomonas lindnari. Arch. of Biochem. a. Biophysics 34, 478–479 (1951).

    Article  CAS  Google Scholar 

  • Hartt, C. E.: The synthesis of sucrose by excised blades of sugar cane plant during the day and the night. Hawaiian Planter’s Rec. 41, 33–46 (1937); 47, 113–132 (1943).

    CAS  Google Scholar 

  • The synthesis in the sugar cane plant. Hawaiian Planter’s Rec. 44, 89–116 (1940); 47, 155–170, 223–255 (1943); 48, 31–42 (1944).

    Google Scholar 

  • Hassid, W. Z., and E. W. Putman: Transformation of sugars in plants. Annual Rev. Plant Physiol. 1, 109–124 (1950).

    Article  Google Scholar 

  • Hirst, E. L.: Recent progress in the chemistry of the pectic materials and plant gums. J. Chem. Soc. (Lond.) 1942, 70–78.

    Google Scholar 

  • Horecker, B. L.: Phosphorus Metabolism, vol. I, p. 117–144. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • A new pathway for the oxidation of carbohydrate. Brewers Digest 28, 214–219 (1953).

    Google Scholar 

  • Horecker, B. L., and P. Z. Smyrniotis: The enzymatic formation of sedoheptulose phosphate from pentose phosphate. J. Amer. Chem. Soc. 74, 2123 (1952).

    Article  CAS  Google Scholar 

  • The coenzyme of thiamine pyrophosphate in pentose phosphate metabolism. J. Amer. Chem. Soc. 75, 1009–1010 (1953).

    Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis, H. Hiatt and P. Maks: Tetrose phosphate and sedoheptulose diphosphate formation. J. of Biol. Chem. 212, 827–836 (1955).

    CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953).

    CAS  Google Scholar 

  • Horecker, B. L., P. Z. Smyrniotis and J. E. Seegmiller: The enzymatic conversion of 6-phosphogluconate to ribulose-5-phosphate and ribose-5-phosphate. J. of Biol. Chem. 193, 383–396 (1951).

    CAS  Google Scholar 

  • Ignatieff, V., and H. Wasteneys: Phosphatase distribution in some higher plants. Biochemic. J. 30, 1171–1182 (1936).

    CAS  Google Scholar 

  • Jones, J. K. N., and F. Smith: Plant gums and mucilages. Adv. Carbohydrate Chem. 4, 243–291 (1949).

    Article  CAS  Google Scholar 

  • Keilin, D., and E. F. Hartree: Properties of glucose oxidase (Notatin). Biochemic. J. 42, 221–229 (1948).

    CAS  Google Scholar 

  • Kocholaty, W. J.: Microbial antagonism and Brucella abortus. J. Bacter. 44, 143 (1942).

    Google Scholar 

  • Leloir, L. F.: The enzymatic transformation of uridine diphosphate glucose. Arch. of Biochem. a. Biophysics 33, 186–190 (1951).

    Article  CAS  Google Scholar 

  • Lohmann, K.: Über Phosphorylierung und Dephosphorylierung. Bildung der natürlichen Hexosemonophosphorsäure aus ihren Komponenten. Biochem. Z. 262, 137–151 (1933).

    CAS  Google Scholar 

  • Mc Cready, R. M.: Carbohydrate Transformations in Plants with Special Reference to Sucrose Synthesis. Doctoral Thesis, University of California, Berkeley, 1945.

    Google Scholar 

  • Mc Cready, R. M., and W. Z. Hassid: Transformation of sugars in excised barley shoots. Plant Physiol. 16, 599–610 (1941).

    Article  PubMed  CAS  Google Scholar 

  • Meyerhgf, O.: Lactic acid formation from fermentable hexoses. Biochem. Z. 183, 176–215 (1927).

    Google Scholar 

  • Meyerhgf, O., u. K. Lohmann: Enzymatic equilibrium reaction between hexosediphosphate and dihydroxyacetone phosphate. Biochem. Z. 271, 89–110 (1934).

    Google Scholar 

  • Meyerhgf, O., K. Lohmann u. P. Schuster: Aldol condensation of dihydroxyacetone with glyceraldehyde. Biochem. Z. 286, 301, 319–335 (1936).

    Google Scholar 

  • Nelson, J. M., and R. Auchincloss: The effects of glucose and fructose on the sucrose content in potato slices. J. Amer. Chem. Soc. 55, 3769–3772 (1933).

    Article  CAS  Google Scholar 

  • Nurmia, M.: Transformation of sugars in plants. Ann. Acad. Sci. fenn., Ser. A 44 (8), 1–105 (1935).

    Google Scholar 

  • Pfankuch, E.: Über die Phosphatase der Kartoffel und der Zuckerrübe. Z. physiol. Chem. 241, 34–46 (1936).

    Article  CAS  Google Scholar 

  • Putman, E. W., and W. Z. Hassid: Unpublished data.

    Google Scholar 

  • Sugar transformation in leaves of Canna indica. I. Synthesis and inversion of sucrose. J. of Biol. Chem. 207, 885–902 (1954).

    Google Scholar 

  • Quayle, J. R., R. C. Fuller, A. A. Benson and M. Calvin: Enzymatic carboxylation of ribulose diphosphate. J. Amer. Chem. Soc. 76, 3610 (1954).

    Article  CAS  Google Scholar 

  • Backer, E.: Phosphorus Metabolism, vol.I, p. 145–148. Baltimore: Johns Hopkins Press 1951.

    Google Scholar 

  • Racker, E., G. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010–1111 (1953).

    Article  CAS  Google Scholar 

  • Roberts, E. C., C. K. Cain, R. D. Muir, F. J. Reitherl, W. L. Gaby, J. T. van Bruggen, D. M. Holman, P. A. Katzman, L. R. Jones and E. A. Doisy: Penicillin B, an antibacterial substance for Penicillium notatum. J. of Biol. Chem. 147, 47–58 (1943).

    CAS  Google Scholar 

  • Schou, L., A. A. Benson, J. A. Bassham and M. Calvin: Path of carbon in photosynthesis. XI. Glycolic acid. Physiol. Plantarum (Copenh.) 3, 487–495 (1950).

    Article  Google Scholar 

  • Slein, M. W.: Phosphomannose isomerase. J. of Biol. Chem. 186, 753–761 (1950).

    CAS  Google Scholar 

  • Smith, J. H. C.: Concurrency of carbohydrate formation and carbon dioxide adsorption during photosynthesis in sunflower leaves. Plant Physiol. 19, 394–403 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Somers, G. F., and E. L. Cosby: Conversion of fructose-6-phosphate into glucose-6-phosphate in plant extracts. Arch. of Biochem. 6, 295–302 (1945).

    CAS  Google Scholar 

  • Spoehr, H. A., and H. H. Strain: The interconversion of hexoses by means of phosphates and the formation of glucose. J. of Biol. Chem. 85, 365–384 (1929).

    CAS  Google Scholar 

  • Stumpf, P. K.: Carbohydrate metabolism in higher plants. I. Pea aldolase. J. of Biol. Chem. 176, 233–241 (1948).

    CAS  Google Scholar 

  • Tankó, B.: Hexosephosphates produced by higher plants. Biochemic. J. 30, 692–700 (1936).

    Google Scholar 

  • Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36, 567–571 (1949).

    Article  CAS  Google Scholar 

  • Virtanen, A. I., and M. Nordlund: Synthesis of sucrose in plant tissue. Biochemic. J. 28, 1729–1732 (1934).

    CAS  Google Scholar 

  • Weissbach, A., P. Z. Smyrniotis and B. L. Horecker: Pentose phosphate and CO2 fixation with spinach extracts. J. Amer. Chem. Soc. 76, 3611–3612 (1954).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Hassid, W.Z. (1958). Enzymatic synthesis (including brief review of formation in photosynthesis), and interconversion of the monosaccharides. In: Åberg, B., et al. Aufbau · Speicherung · Mobilisierung und Umbildung der Kohlenhydrate / Formation · Storage · Mobilization and Transformation of Carbohydrates. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94731-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94731-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94732-2

  • Online ISBN: 978-3-642-94731-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics