Enzymatic synthesis (including brief review of formation in photosynthesis), and interconversion of the monosaccharides

  • W. Z. Hassid
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 6)


The carbohydrates are primarily the product of photosynthetic activity in plants1. In this process the green plants capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to CO2) carbon compounds, chiefly carbohydrates. The over-all reaction of the basic process of photosynthesis as it occurs in green plants is given by the classical equation in which CO2 and water are taken up by the plant and reduced to carbohydrate with the evolution of oxygen:
$${\rm{C}}{{\rm{O}}_2} + {{\rm{H}}_2}{\rm{O}}\mathop {\rightleftharpoons} \limits_{ - \mathop {{\rm{energy}}}\limits_{{\rm{respiration}}} }^{\mathop {{\rm{photosynthesis}}}\limits_{ + hv} } {{\rm{O}}_2} + ({\rm{C}}{{\rm{H}}_2}{\rm{O}}){\rm{x}}$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albaum, H. G., M. Ogur and A. Hirshfeld: Isolation of adenosine triphosphate from plant tissue. Federat. Proc. 8, 179 (1949).Google Scholar
  2. Axelrod, B., and R. S. Bandurski: Oxidative metabolism of hexose phosphates in higher plants. Federat. Proc. 11, 182 (1952).Google Scholar
  3. Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in plants. J. of Biol. Chem. 202, 619–634 (1953).Google Scholar
  4. Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. Chem. Soc. 76, 1760–1770 (1954).CrossRefGoogle Scholar
  5. Bean, R. C.: Carbohydrate Metabolism in a Marine Alga. Doctorate Thesis, University of California, Berkeley, 1954.Google Scholar
  6. Benson, A. A.: Photosynthesis: First reactions. J. Chem. Education 31, 484–487 (1954).CrossRefGoogle Scholar
  7. Benson, A. A., J. A. Bassham and M. Calvin: Sedoheptulose in photosynthesis by plants. J. Amer. Chem. Soc. 73, 2970 (1951).CrossRefGoogle Scholar
  8. Benson, A. A., and M. Calvin: The path of carbon in photosynthesis. III. Cold Spring Harbor Symp. Quant. Biol. 13, 6–10 (1948).CrossRefGoogle Scholar
  9. Respiration and Photosynthesis. J. of Exper. Bot. 1, 63–68 (1950).Google Scholar
  10. Benson, A. A., M. Calvin, V. A. Haas, S. Aronoff, A. G. Hall, J. A. Bassham and J. W. Weigl: In J. Frank and W. E. Looms, Photosynthesis in Plants, p. 381–401. Ames: Iowa State College Press 1949.Google Scholar
  11. Burkard, J., u. C. Neuberg: Zur Frage nach der Entstehung des Rohrzuckers. Biochem. Z. 270, 229–234 (1934).Google Scholar
  12. Calvin, M., and A. A. Benson: Path of carbon in photosynthesis. IV. The identity and sequence of intermediates in sucrose synthesis. Science (Lancaster, Pa.) 109, 140–142 (1949).Google Scholar
  13. Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladini: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333–350 (1950).Google Scholar
  14. Cardini, C. E., A. C. Paladini, R. Caputto and L. F. Leloir: Uridine diphosphate glucose: The coenzyme of the galactose-glucose phosphate isomerization. Nature (Lond.) 165, 191–192 (1950).CrossRefGoogle Scholar
  15. Cecil, R., and A. G. Ogston: The use of glucose oxidase (Notatin) for determination of glucose in biological material and for study of glucose-producing systems by manometric methods. Biochemic. J. 42, 229–238 (1948).Google Scholar
  16. Cohen, S. S.: Phosphorus Metabolism, vol. I, p. 148–158. Baltimore: Johns Hopkins Press 1951.Google Scholar
  17. Coulthard, C. E., R. Michaelis, W. F. Short, G. Sykes, G. E. H. Skirmshire, A. F. B. Standfast, J. H. Birkinshaw and H. Raistrick: Notatin — an antibacterial glucose-aerodehydrogenase from Penicillium notatum and Penicillium resticulosum. Biochemic. J. 38, 24 (1945).Google Scholar
  18. de Moss, R. D., R. C. Bard and I. C. Gunsalus: The mechanism of heterolactic fermentation: a new route of ethanol formation. J. Bacter, 62, 499–511 (1951).Google Scholar
  19. Dickens, F.: Oxidation of phosphohexonate and pentosephosphoric acid by yeast enzymes. Biochemic. J. 32, 1626–1636, 1645–1653 (1938).Google Scholar
  20. Dickens, F., and G. E. Glock: Direct oxidation of glucose-6-phosphate, 6-phosphogluconate and pentose-5-phosphate by enzymes of animal origin. Biochemic. J. 50, 81–95 (1952).Google Scholar
  21. Edelman, J., V. Ginsburg and W. Z. Hassid: Conversion of monosaccharides to sucrose and cellulose in wheat seedlings. J. of Biol. Chem., 213, 843–854 (1955).Google Scholar
  22. Forrest, R. S., L. Hough and J. K. N. Jones: Enzymatic synthesis of ketopentose. Chem. a. Ind. 1951, 1093.Google Scholar
  23. Gibbs, M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in pea plant. Nature (Lond.) 170, 164–165 (1952).CrossRefGoogle Scholar
  24. Oxidation of hexose phosphate and pentose phosphate by cellfree extracts of pea leaves. Plant Physiol. 29, 34–39 (1954).Google Scholar
  25. Gibbs, M., and R. D. de Moss: Ethanol formation in Pseudomonas lindnari. Arch. of Biochem. a. Biophysics 34, 478–479 (1951).CrossRefGoogle Scholar
  26. Hartt, C. E.: The synthesis of sucrose by excised blades of sugar cane plant during the day and the night. Hawaiian Planter’s Rec. 41, 33–46 (1937); 47, 113–132 (1943).Google Scholar
  27. The synthesis in the sugar cane plant. Hawaiian Planter’s Rec. 44, 89–116 (1940); 47, 155–170, 223–255 (1943); 48, 31–42 (1944).Google Scholar
  28. Hassid, W. Z., and E. W. Putman: Transformation of sugars in plants. Annual Rev. Plant Physiol. 1, 109–124 (1950).CrossRefGoogle Scholar
  29. Hirst, E. L.: Recent progress in the chemistry of the pectic materials and plant gums. J. Chem. Soc. (Lond.) 1942, 70–78.Google Scholar
  30. Horecker, B. L.: Phosphorus Metabolism, vol. I, p. 117–144. Baltimore: Johns Hopkins Press 1951.Google Scholar
  31. A new pathway for the oxidation of carbohydrate. Brewers Digest 28, 214–219 (1953).Google Scholar
  32. Horecker, B. L., and P. Z. Smyrniotis: The enzymatic formation of sedoheptulose phosphate from pentose phosphate. J. Amer. Chem. Soc. 74, 2123 (1952).CrossRefGoogle Scholar
  33. The coenzyme of thiamine pyrophosphate in pentose phosphate metabolism. J. Amer. Chem. Soc. 75, 1009–1010 (1953).Google Scholar
  34. Horecker, B. L., P. Z. Smyrniotis, H. Hiatt and P. Maks: Tetrose phosphate and sedoheptulose diphosphate formation. J. of Biol. Chem. 212, 827–836 (1955).Google Scholar
  35. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953).Google Scholar
  36. Horecker, B. L., P. Z. Smyrniotis and J. E. Seegmiller: The enzymatic conversion of 6-phosphogluconate to ribulose-5-phosphate and ribose-5-phosphate. J. of Biol. Chem. 193, 383–396 (1951).Google Scholar
  37. Ignatieff, V., and H. Wasteneys: Phosphatase distribution in some higher plants. Biochemic. J. 30, 1171–1182 (1936).Google Scholar
  38. Jones, J. K. N., and F. Smith: Plant gums and mucilages. Adv. Carbohydrate Chem. 4, 243–291 (1949).CrossRefGoogle Scholar
  39. Keilin, D., and E. F. Hartree: Properties of glucose oxidase (Notatin). Biochemic. J. 42, 221–229 (1948).Google Scholar
  40. Kocholaty, W. J.: Microbial antagonism and Brucella abortus. J. Bacter. 44, 143 (1942).Google Scholar
  41. Leloir, L. F.: The enzymatic transformation of uridine diphosphate glucose. Arch. of Biochem. a. Biophysics 33, 186–190 (1951).CrossRefGoogle Scholar
  42. Lohmann, K.: Über Phosphorylierung und Dephosphorylierung. Bildung der natürlichen Hexosemonophosphorsäure aus ihren Komponenten. Biochem. Z. 262, 137–151 (1933).Google Scholar
  43. Mc Cready, R. M.: Carbohydrate Transformations in Plants with Special Reference to Sucrose Synthesis. Doctoral Thesis, University of California, Berkeley, 1945.Google Scholar
  44. Mc Cready, R. M., and W. Z. Hassid: Transformation of sugars in excised barley shoots. Plant Physiol. 16, 599–610 (1941).PubMedCrossRefGoogle Scholar
  45. Meyerhgf, O.: Lactic acid formation from fermentable hexoses. Biochem. Z. 183, 176–215 (1927).Google Scholar
  46. Meyerhgf, O., u. K. Lohmann: Enzymatic equilibrium reaction between hexosediphosphate and dihydroxyacetone phosphate. Biochem. Z. 271, 89–110 (1934).Google Scholar
  47. Meyerhgf, O., K. Lohmann u. P. Schuster: Aldol condensation of dihydroxyacetone with glyceraldehyde. Biochem. Z. 286, 301, 319–335 (1936).Google Scholar
  48. Nelson, J. M., and R. Auchincloss: The effects of glucose and fructose on the sucrose content in potato slices. J. Amer. Chem. Soc. 55, 3769–3772 (1933).CrossRefGoogle Scholar
  49. Nurmia, M.: Transformation of sugars in plants. Ann. Acad. Sci. fenn., Ser. A 44 (8), 1–105 (1935).Google Scholar
  50. Pfankuch, E.: Über die Phosphatase der Kartoffel und der Zuckerrübe. Z. physiol. Chem. 241, 34–46 (1936).CrossRefGoogle Scholar
  51. Putman, E. W., and W. Z. Hassid: Unpublished data.Google Scholar
  52. Sugar transformation in leaves of Canna indica. I. Synthesis and inversion of sucrose. J. of Biol. Chem. 207, 885–902 (1954).Google Scholar
  53. Quayle, J. R., R. C. Fuller, A. A. Benson and M. Calvin: Enzymatic carboxylation of ribulose diphosphate. J. Amer. Chem. Soc. 76, 3610 (1954).CrossRefGoogle Scholar
  54. Backer, E.: Phosphorus Metabolism, vol.I, p. 145–148. Baltimore: Johns Hopkins Press 1951.Google Scholar
  55. Racker, E., G. de la Haba and I. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010–1111 (1953).CrossRefGoogle Scholar
  56. Roberts, E. C., C. K. Cain, R. D. Muir, F. J. Reitherl, W. L. Gaby, J. T. van Bruggen, D. M. Holman, P. A. Katzman, L. R. Jones and E. A. Doisy: Penicillin B, an antibacterial substance for Penicillium notatum. J. of Biol. Chem. 147, 47–58 (1943).Google Scholar
  57. Schou, L., A. A. Benson, J. A. Bassham and M. Calvin: Path of carbon in photosynthesis. XI. Glycolic acid. Physiol. Plantarum (Copenh.) 3, 487–495 (1950).CrossRefGoogle Scholar
  58. Slein, M. W.: Phosphomannose isomerase. J. of Biol. Chem. 186, 753–761 (1950).Google Scholar
  59. Smith, J. H. C.: Concurrency of carbohydrate formation and carbon dioxide adsorption during photosynthesis in sunflower leaves. Plant Physiol. 19, 394–403 (1944).PubMedCrossRefGoogle Scholar
  60. Somers, G. F., and E. L. Cosby: Conversion of fructose-6-phosphate into glucose-6-phosphate in plant extracts. Arch. of Biochem. 6, 295–302 (1945).Google Scholar
  61. Spoehr, H. A., and H. H. Strain: The interconversion of hexoses by means of phosphates and the formation of glucose. J. of Biol. Chem. 85, 365–384 (1929).Google Scholar
  62. Stumpf, P. K.: Carbohydrate metabolism in higher plants. I. Pea aldolase. J. of Biol. Chem. 176, 233–241 (1948).Google Scholar
  63. Tankó, B.: Hexosephosphates produced by higher plants. Biochemic. J. 30, 692–700 (1936).Google Scholar
  64. Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36, 567–571 (1949).CrossRefGoogle Scholar
  65. Virtanen, A. I., and M. Nordlund: Synthesis of sucrose in plant tissue. Biochemic. J. 28, 1729–1732 (1934).Google Scholar
  66. Weissbach, A., P. Z. Smyrniotis and B. L. Horecker: Pentose phosphate and CO2 fixation with spinach extracts. J. Amer. Chem. Soc. 76, 3611–3612 (1954).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • W. Z. Hassid

There are no affiliations available

Personalised recommendations