Skip to main content

Divalent Cation Content of Normal and ATP-Depleted Erythrocytes and Erythrocyte Membranes

  • Conference paper
Red Cell Shape

Abstract

Recent studies have suggested a central role for alterations in cellular divalent cations in the pathogenesis of red cell damage during in vitro storage [27, 43, 45]. Copper and calcium are known to exchange between plasma and red cells. Passive exchange occurs between plasma free copper and non-erythrocuprein red cell copper, allowing copper to come to equilibrium between plasma and two cellular compartments [4]. Calcium, which enters the red cell by diffusion, is extruded by a process which requires energy [36]. Calcium exodus is mediated by a « pump » which is linked to a calcium-activated ATPase [20, 26, 37, 42, 44, 45, 46]. This phosphohydrolytic enzyme tranduces energy from adenosine triphosphate (ATP) for the work required for calcium extrusion against a steep gradient. Hence, the system in several respects is analogous to the red cell sodium pump [14]. Weed, La Celle and Merrill provided evidence for the physiological importance of the red cell calcium pump by demonstrating that calcium accumulation was accompanied by detrimental changes in biophysical properties of the cell [43]. Studies by Wins and Schoffeniels [45], and Palek, Curby and Lionetti [27, 28] also indicated that calcium ion has an effect on the red cell membrane in vitro, since it induced volume reduction (shrinkage), in part explained as being due to a conformational change in membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aledort (L. M.), Weed (R. I.) and Troup (S. B.) (1966): Ionic effects on firefly bioluminescence assay of red blood cell ATP. Anal. Biochem., 17, 268.

    Article  PubMed  CAS  Google Scholar 

  2. Bessis (M.) and Brecher (G.) (1971): Action du plasma conservé sur la forme des globules rouges. Nouv. Rev. fr. Hémat., 11, 305.

    CAS  Google Scholar 

  3. Blomfield (J.) and MacMahon (R. A.) (1969): Microdetermination of plasma and erythrocyte copper by atomic absorption spectrophotometry. J. Clin. Path., 22, 136.

    Article  PubMed  CAS  Google Scholar 

  4. Bush (J. A.), Mahoney (J. P.), Gubler (C. J.), Cartwright (G. E.) and Wintrobe (M. M.) (1956): Studies on copper metabolism. XXI. The transfer of radiocopper between erythrocytes and plasma. J. Lab. Clin. Med., 47, 898.

    PubMed  CAS  Google Scholar 

  5. Collier (H. B.) and Lam (A.) (1970): Binding of Ca2+ and Mg2+ by 2,3,-diphospho-glycerate. Biochim. Biophys. Acta, 222, 299.

    Article  PubMed  CAS  Google Scholar 

  6. Crosby (W. H.), Munn (J. I.) and Furth (F. W.) (1954): Standardizating a method for clinical hemoglobinometry. U.S. Armed Forces Med. J., 5, 693.

    PubMed  CAS  Google Scholar 

  7. Dowdy (R. P.) (1969): Copper metabolism. Amer. J. Clin. Nutrit., 22, 887.

    CAS  Google Scholar 

  8. Dunn (M. J.) and Walser (M.) (1966): Magnesium depletion in normal man. Metabolism, 15, 884.

    Article  PubMed  CAS  Google Scholar 

  9. Féo (C.) (1972): Transformation discocyte-échinocyte par le plasma conservé. Rôle de la formation de lysolécithine. Nouv. Rev. fr. Hémat., 12, 455.

    Google Scholar 

  10. Forstner (J.) and Manery (J. F.) (1971): Calcium binding by human erythrocyte membranes. Biochem. J., 124, 563.

    PubMed  CAS  Google Scholar 

  11. Frazer (A.), Secunda (S. K.) and Mendels (J.) (1972): A methods for the determination of sodium, potassium, magnesium and lithium concentrations in erythrocytes. Clin. Chem. Acta, 36, 499.

    Article  CAS  Google Scholar 

  12. Fredericks (R. E.), Tanaka (K. R.) and Valentine (W. N.) (1964): Variations of human blood cell zinc in disease. J. Clin. Invest., 43, 304.

    Article  CAS  Google Scholar 

  13. Ginsburg (S.), Smith (J. G.), Ginsberg (F. M.), Rearden (J. A.) and Aikawa (J. K.) (1962): Magnesium metabolism of the human and rabbit erythrocytes. Blood, 20, 722.

    PubMed  CAS  Google Scholar 

  14. Glynn (I. M.) (1968): Membrane adenosine triphosphatase and cation transport. Brit. Med. Bull., 24, 165.

    PubMed  CAS  Google Scholar 

  15. Guidotti (G.): Membrane proteins.

    Google Scholar 

  16. Harrison (D. G.) and Long (C.) (1968): The calcium content of human erythrocytes. J. Physiol., 199, 367.

    PubMed  CAS  Google Scholar 

  17. Hunt (B. J.) and Manery (J. F.) (1970): Use of ion-exchange resin in preparing erythrocytes for magnesium determinations. Clin. Chem., 16, 269.

    PubMed  CAS  Google Scholar 

  18. Kirkpatrick (F. H.): Unpublished observations.

    Google Scholar 

  19. Klibinsky (G.) and Devries (A.) (1963): Quantitative study of erythrocyte lysolecithin interaction. Biochim. Biophys. Acta, 70, 176.

    Article  Google Scholar 

  20. Lee (K. S.) and Shin (B. G.) (1969): Studies on the active transport of calcium in human red cells. J. Gen. Physiol., 54, 713.

    Article  PubMed  CAS  Google Scholar 

  21. Lichtman (M. A.) and Marinetti (G. V.) (1972): Erythrocyte sphere transformation in stored blood: relationship to plasma lysolecithin and erythrocyte ATP. J. Clin. Invest., 51, 57 a.

    Article  Google Scholar 

  22. Lichtman (M. A.) and Marinetti (G. V.) (1972): Erythrocyte sphere transformation in vitro: relationship to plasma and cellular factors. In workshop on red cell shape and structure. Nouv. Rev. fr. Hémat., 12, 755.

    CAS  Google Scholar 

  23. Lowry (O. H.), Rosebrough (N. J.), Farr (L.) and Randall (R. J.) (1951): Protein measurement with Folin phenol measurement. J. Biol. Chem., 193, 265.

    PubMed  CAS  Google Scholar 

  24. Mazia (D.) and Ruby (A.) (1968): Dissolution of erythrocyte membrane in water and comparison of the membrane protein with other structural proteins. Proc. Natl. Acad. Sci., 61, 1005.

    Article  PubMed  CAS  Google Scholar 

  25. Olehy (D. A.), Schmitt (R. A.) and Bethard (W. F.) (1966): Neutron activation analysis of magnesium, calcium, strontium, manganese, cobalt, copper, zinc, sodium, potassium in human erythrocytes and plasma. J. Nuclear Med., 7, 917.

    CAS  Google Scholar 

  26. Olson (E. J.) and Cazort (R. J.) (1969): Active calcium and strontium transport in human erythrocyte ghosts. J. Gen. Physiol., 53, 311.

    Article  PubMed  CAS  Google Scholar 

  27. Palek (J.), Curby (W. A.) and Lionetti (F. J.) (1971): Effect of calcium and adenosine triphosphate on volume of human red cell ghosts. Amer. J. Physiol., 220, 19.

    PubMed  CAS  Google Scholar 

  28. Palek (J.), Curby (W. A.) and Lionetti (F. J.) (1971): Relation of Ca++ activated ATPase to Ca++-linked shrinkage of human red cell ghosts. Amer. J. Physiol., 220, 1028.

    PubMed  CAS  Google Scholar 

  29. Ponder (E.) (1948): Hemolysis and related phenomena. Grune and Stratton, édit., New York and London.

    Google Scholar 

  30. Randall (R. F.) and Maren (T. H.) (1972): Absence of carbonic anhydrase on red cell membranes. Biochim. Biophys. Acta, 268, 730.

    PubMed  CAS  Google Scholar 

  31. Reynolds (J. A.) (1972): Are inorganic cations essential for the stability of biological membranes ? Ann. N.Y. Acad. Sci., 195, 75.

    Article  PubMed  CAS  Google Scholar 

  32. Rose (I. A.) (1968): The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Pros. Natl. Acad. Sci., 61, 1079.

    Article  CAS  Google Scholar 

  33. Rosenthal (A. S.), Kregenow (F. M.) and Mosle (H. L.) (1970): Some characteristics of Ca++ dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils. Biochim. Biophys. Acta, 196, 213.

    Google Scholar 

  34. Rosner (F.) and Gorfren (P. C.) (1968): Erythrocyte and plasma zinc and magnesium levels in health and disease. J. Lab. Clin. Med., 72, 213.

    PubMed  CAS  Google Scholar 

  35. Schaeffer (K.), Young (J. E.), Buckaloo (G. W.) and Howell (S. M.) (1970): Fractionation studies of copper in erythrocytes from normal, sickle cell anemia and hemoglobin G disease. Proc. Soc. Exp. Biol. Med., 134, 213.

    PubMed  CAS  Google Scholar 

  36. Schatzmann (H. J.) (1966): ATP-dependent Ca++-extrusion from human red cells. Experientia, 22, 364.

    Article  PubMed  CAS  Google Scholar 

  37. Schatzmann (H. J.) and Vincenzi (F. F.) (1969): Calcium movements across the membrane of human red cells. J. Physiol., 201, 369.

    PubMed  CAS  Google Scholar 

  38. Shields (G. S.), Markowitz (H.), Klassen (W. H.), Cartwright (G. E.) and Wintrobe (M. M.) (1961): Studies on copper metabolism. XXXI. Erythrocyte copper. J. Clin. Invest., 40, 2007.

    CAS  Google Scholar 

  39. Tolberg (A. B.) and Macey (R. I.) (1971): The release of membrane-bound calcium by radiation and sulfhydryl reagents. J. Cells Physiol., 79, 43.

    Article  Google Scholar 

  40. Valberg (L. S.), Holt (J. M.), Paulson (E.) and Szivek (J.) (1965): Spectrochemical analysis of sodium, potassium, calcium, magnesium, copper and zinc in normal human erythrocytes. J. Clin. Invest., 44, 379.

    Article  PubMed  CAS  Google Scholar 

  41. Vallee (B. L.), Lewis (H. D.), Altschule (M. D.) and Gibson (J. G.) (1949): II. The relationship between carbonic anhydrase activity and zinc content of erythrocytes in normal, in anemic and other pathologic conditions. Blood, 4, 467.

    PubMed  CAS  Google Scholar 

  42. Vincenzi (F. F.) (1968): The calcium pump of the erythrocyte membrane and its inhibition by ethacrynic acid. Proc. West. Pharmacol. Soc, 11, 58.

    PubMed  CAS  Google Scholar 

  43. Weed (R. L), La Celle (P. L.) and Merrill (E. W.) (1969): Metabolic dependence of red cell deformability. J. Clin. Invest., 48, 795.

    Article  PubMed  CAS  Google Scholar 

  44. Wins (P.) and Schoffeniels (E.) (1968): Possible involvement of electron transfer reactions in the (Mg+Ca) dependent ATPase activity of red cell ghosts. Life Sci., 7, 673.

    Article  CAS  Google Scholar 

  45. Wins (P.) and Schoffeniels (E.) (1966): ATP Ca++-linked contraction of red cell ghosts. Arch. Intern. Physiol. Biochim., 74, 812.

    Article  CAS  Google Scholar 

  46. Wolf (H. U.) (1970): Purification of the Ca2+-dependent ATPase of human erythrocyte membranes. Biochim. Biophys. Acta, 219, 521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Masson & Cie, Editeurs, Paris

About this paper

Cite this paper

Lichtman, M.A., Weed, R.I. (1973). Divalent Cation Content of Normal and ATP-Depleted Erythrocytes and Erythrocyte Membranes. In: Bessis, M., Weed, R.I., Leblond, P.F. (eds) Red Cell Shape. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88062-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88062-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88064-3

  • Online ISBN: 978-3-642-88062-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics