Skip to main content

C3 Binding to Bacterial Surfaces

  • Conference paper
Bacteria, Complement and the Phagocytic Cell

Part of the book series: NATO ASI Series ((ASIH,volume 24))

  • 148 Accesses

Abstract

The activation of complement and binding of C3 to the surface of pathogenic organisms are prerequisites for the biologic role of the complement system in host defense, and the virulence of many successful pathogens is the result of their ability to resist complement-mediated opsonophagocytosis and/or killing. Studies of complement binding have provided a foundation for evaluating the mechanisms of virulence of several important pathogens. More complete understanding of these organisms’ resistance to complement eventually may provide means of attenuating their virulence in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tack BF (1983) The ß-Cys-7-Glu thiolester bond in human C3, C4, and a2-macroglobulin. Springer Semin in Immunopathol 6: 259–282

    Article  CAS  Google Scholar 

  2. Isenman DE, Kells DIC, Cooper NR, Muller-Eberhard HJ, Pangburn MK (1981) Nucleophilic modification of human complement protein C3: correlation of conformational changes with acquisition of Cab-like functional properties. Biochemistry 20: 4458–4467

    Article  PubMed  CAS  Google Scholar 

  3. Law S-KA (1983) Non-enzymic activation of the covalent binding re-action of the complement protein C3. Biochem J 211: 381–389

    PubMed  CAS  Google Scholar 

  4. Law SK, Lichtenberg NA, Levine RP (1980) Covalent binding and hemo-lytic activity of complement proteins. Proc Natl Acad Sci USA 77: 7194–7198

    Article  PubMed  CAS  Google Scholar 

  5. Hostetter MK, Thomas ML, Rosen FS, Tack BF (1982) Binding of C3b proceeds by a transesterification reaction at the thiolester site. Nature 298: 72–75

    Article  PubMed  CAS  Google Scholar 

  6. Law SK, Fearon DT, Levine RP (1979) Action of the C3b-inactivator on cell-bound C3b. J Immunol 122: 759–765

    PubMed  CAS  Google Scholar 

  7. Law SK, Lichtenberg NA, Levine RP (1979) Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol 123: 1388–1394

    PubMed  CAS  Google Scholar 

  8. Law S-KA, Minich TM, Levine RP (1981) Binding reaction between the third human complement protein and small molecules. Biochemistry 20: 7457–7474

    Article  PubMed  CAS  Google Scholar 

  9. Capel PJA, Groeneboer 0, Grosveld G, Pondman KW (1978) The binding of activated C3 to polysaccharides and immunoglobulins. J Immunol 121: 2566–2572

    PubMed  CAS  Google Scholar 

  10. Law SK, Levine RP (1977) Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci USA 74: 2701–2705

    Article  PubMed  CAS  Google Scholar 

  11. Levine RP, Finn R, Gross R (1983) Interactions between C3b and cell-surface macromolecules. Annals NY Acad Sci 421: 235–245

    Article  CAS  Google Scholar 

  12. Weis JJ, Law SK, Levine RP, Cleary PP (1985) Resistance to phagocy-tosis by group A streptococci: failure of deposited complement opsonins to interact with cellular receptors. J Immunol 134: 500–505

    PubMed  CAS  Google Scholar 

  13. Hostetter MK (1986) Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J Infect Dis 153: 682–693

    Article  PubMed  CAS  Google Scholar 

  14. Pangburn MK, Muller-Eberhard HJ (1984) The alternative pathway of complement. Springer Semin Immunopathol 7: 163–192

    Article  PubMed  CAS  Google Scholar 

  15. Law S-KA, Minich TM, Levine RP (1984) Covalent binding efficiency of the third and fourth complement proteins in relation to pH, nucleophilicity, and availability of hydroxyl groups. Biochemistry 23: 3267–3272

    Article  PubMed  CAS  Google Scholar 

  16. Brown EJ, Joiner KA, Cole RM, Berger M (1983) Localization of com-plement component 3 on Streptococcus pneumoniae: anti-capsular antibody causes complement deposition on the pneumococcal capsule. Infect Immun 39: 403–409

    PubMed  CAS  Google Scholar 

  17. Brown EJ, Hosea SW, Hammer CH, Burch CG, Frank MM (1982) A quanti-tative analysis of the interactions of antipneumococcal antibody and complement in experimental pneumococcal bacteremia. J Clin Invest 69: 85–98

    Article  PubMed  CAS  Google Scholar 

  18. Van Dijk WC, Verbrugh HA, Van Der Tol ME, Peters R, Verhoef J (1979) Role of Escherichia coli K capsular antigens during complement activation, C3 fixation, and opsonization. Infect Immun 25: 603–609

    Google Scholar 

  19. Edwards MS, Nicholson-Weller A, Baker CJ, Kasper DL (1980) The role of specific antibody in alternative complement pathway-mediated opsonophagocytosis of type III, group B Streptococcus. J Exp Med 151: 1275–1287

    Article  PubMed  CAS  Google Scholar 

  20. Edwards MS, Kasper DL, Jennings HJ, Baker CJ, Nicholson-Weller A (1982) Capsular sialic acid prevents activation of the alternative complement pathway by type III, group B streptococci. J Immunol 128: 1278–1283

    PubMed  CAS  Google Scholar 

  21. Jarvis GA, Vedros NA (1987) Sialic acid of group B Neisseria menin- gitidis regulates alternative complement pathway activation. Infect Immun 55: 174–180

    PubMed  CAS  Google Scholar 

  22. Fine DP, Marney SR Jr, Colley DG, Desprez RM (1973) Haemonhilus influenzae decomplementation pattern in chelated and nonchelated serum. In: Haemonhilus influenzae (Sell SHW, Karzon DT, eds) Vanderbilt University Press, Nashville, pp 113-117

    Google Scholar 

  23. Quinn PH, Crosson FJ Jr, Winkelstein JA, Moxon ER (1977) Activation of the alternative complement pathway by Haemonhilus influenzae type B. Infect Immun 16: 400–402

    PubMed  CAS  Google Scholar 

  24. Tarr PI, Hosea SW, Brown EJ, Schneerson R, Sutton A, Frank MM (1982) The requirement of specific anticapsular IgG for killing of Haemophilus influenzae by the alternative pathway of complement activation. J Immunol 128: 1772–1775

    PubMed  CAS  Google Scholar 

  25. Steele NP, Munson RS Jr, Granoff DM, Cummins JE, Levine RP (1984) Antibody-dependent alternative pathway killing of Haemonhilus influenzae type b. Infect Immun 44: 452–458

    PubMed  CAS  Google Scholar 

  26. Jacks-Weis J, Kim Y, Cleary PP (1982) Restricted deposition of C3 on M+ group A streptococci: correlation with resistance to phagocytosis. J Immunol 128: 1897–1902

    PubMed  CAS  Google Scholar 

  27. Hummell DS, Berninger RW, Tomasz A, Winkelstein JA (1981) The fixa-tion of C3b to pneumococcal cell wall polymers as a result of activation of the alternative complement pathway. J Immunol 127: 1287–1289

    PubMed  CAS  Google Scholar 

  28. Hummell DS, Swift AJ, Tomasz A. Winkelstein JA (1985) Activation of the alternative complement pathway by pneumococcal lipoteichoic acid. Infect Immun 47: 384–387

    PubMed  CAS  Google Scholar 

  29. Winkelstein JA, Bocchini JA Jr, Schiffman G (1976) The role of capsular polysaccharide in the activation of the alternative pathway by the pneumococcus. J Immunol 116: 367–370

    PubMed  CAS  Google Scholar 

  30. Brown EJ, Berger M, Joiner KA, Frank MM (1983) Classical complement pathway activation by antipneumococcal antibodies leads to covalent binding of C3b to antibody molecules. Infect Immun 42: 594–598

    PubMed  CAS  Google Scholar 

  31. Levine RP (1985) Molecular interaction between the third complement protein and bacterial cell-surface macromolecules. In: Bayer-Symposium VIII, The Pathogenesis of Bacterial Infections. Springer-Verlag, Berlin Heidelberg, pp 102–120

    Google Scholar 

  32. Brown EJ, Joiner KA, Gaither TA, Hammer CH, Frank MM (1983) The interaction of C3b bound to pneumococci with factor H (fill globulin), factor I (C3b/C4b inactivator), and properdin factor B of the human complement system. J Immunol 131: 409–415

    PubMed  CAS  Google Scholar 

  33. Peterson PK, Schmeling D, Cleary PP, Wilkinson BJ, Kim Y, Quie PG (1979) Inhibition of alternative complement pathway opsonization by group A steptococcal M protein. J Infect Dis 139: 575–585

    Article  PubMed  CAS  Google Scholar 

  34. Fearon DT (1978) Regulation by membrane sialic acid of #10-depen- dent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci USA 75: 1971–1975

    Article  PubMed  CAS  Google Scholar 

  35. Bortolussi R, Ferrieri P, Bjorksten B, Quie PG (1979) Capsular K1 polysaccharide of Escherichia coli: relationship to virulence in newborn rats and resistance to phagocytosis. Infect Immun 25: 293–298

    PubMed  CAS  Google Scholar 

  36. Pluschke G, Mayden J, Achtman M, Levine RP (1983) Role of the cap-sule and the 0 antigen in resistance of 018:K1 Escherichia coli to complement-mediated killing. Infect Immun 42: 907–913

    PubMed  CAS  Google Scholar 

  37. Stevens P, Chu CL, Young LS (1980) K-1 antigen content and the presence of an additional sialic acid-containing antigen among bacteremic K-1 Escherichia coli: correlation with susceptibility to opsonophagocytosis. Infect Immun 29: 1055–1061

    PubMed  CAS  Google Scholar 

  38. Varki A, Kornfeld S (1980) An autosomal dominant gene regulates the extent of 9–0-acetylation of murine erythrocyte sialic acids. J Exp Med 152: 532–544

    Article  PubMed  CAS  Google Scholar 

  39. Musher D, Goree A, Murphy T, Chapman A, Zahradnik J, Apicella M, Baughn R (1986) Immunity to Haemophilus influenzae type b in young adults: Correlation of bactericidal and opsonizing activity with antibody to polyribosylribitol phosphate and lipooligosaccharide before and after vaccination. J Infect Dis 154: 935–943

    Article  PubMed  CAS  Google Scholar 

  40. Zwahlen A, Rubin LG, Moxon ER (1986) Contribution of lipopolysaccha-ride to pathogenicity of Haemophilus influenzae: Comparative virulence of genetically-related strains in rats. Microbial Pathogenesis 1: 465–473

    Google Scholar 

  41. Joiner KA, Grossman N, Schmetz M, Leive L (1986) C3 binds preferen- tially to long chain lipopolysaccharide during alternative patheay activation by Salmonella montevideo. J Immunol 136: 710–715

    PubMed  CAS  Google Scholar 

  42. Zollinger WD, Mandrell RE (1983) Importance of complement source in bactericidal activity of human antibody and murine monoclonal antibody to neningococcal group B polysaccharide. Infect Immun 40: 257–264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cates, K.L., Levine, R.P. (1988). C3 Binding to Bacterial Surfaces. In: Cabello, F.C., Pruzzo, C. (eds) Bacteria, Complement and the Phagocytic Cell. NATO ASI Series, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85718-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85718-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85720-1

  • Online ISBN: 978-3-642-85718-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics