Skip to main content

Im Gegensatz zu Nitroglyzerin führt Pentaerithrityltetranitrat zu deutlich geringerer Bildung von schädlichen Sauerstoffradikalen in Gefäßwandzellen

  • Chapter
Pentaerithrityltetranitrat
  • 20 Accesses

Zusammenfassung

Organische Nitrate wie Nitroglyzerin oder PETN werden bei der Therapie verschiedener kardiovaskulärer Erkrankungen angewandt, bei denen verstärkte Vasodilatationen in bestimmten Kreislaufabschnitten giinstig sind, z.B. bei der Myokardischämie. Leider ist eine erfolgreiche Therapie mit Nitroglyzerin oder anderen organischen Nitraten durch das Auftreten von Nitrattoleranz eingeschränkt, die insbesondere bei der nicht intermittierenden Langzeitgabe eine ungünstige Rolle spielt. Bei der Nitrat-Toleranz handelt es sich um ein multifaktorielles Geschehen, bei dem eine mehr oder weniger stark ausgeprägte neurohumorale Gegenregulation auftritt, ferner eine verstärkte Aktion verschiedener vasokonstriktorischer Hormone beobachtet wird und schließlich auch deutlich abgeschwachte Dilatationen bei Freisetzung von EDRF bzw. Stickstoff-monoxid [1,2] hervorgerufen werden. Trotz einer Reihe von Untersuchungen sind die genauen Mechanismen, die zur Nitrat-Toleranz führen, noch nicht abgeklärt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams J (1992) Use of nitrates in ischemic heart disease. Current Problems in Cardiology 17 (8): 481–542.

    Article  PubMed  CAS  Google Scholar 

  2. Laursen JB, Boesgaard S, Poulsen HE, Aldershvile J (1996) Nitrate tolerance impairs nitric oxide-mediated vasodilation in vivo. Cardiovascular Research 31: 814–819

    Article  PubMed  CAS  Google Scholar 

  3. Münzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1994) Enhanced vascular NADPH oxidase activity contributes to tolerance and cross tolerance after prolonged nitroglycerin treatment in vivo. Circulation 90: 1–355 (Abstract)

    Google Scholar 

  4. Münzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance. J Clin Invest 95: 187–194

    Article  PubMed  Google Scholar 

  5. Skatchkov M, Fink B, Dikalov S, Sommer O, Bassenge E (1996) Antioxidant mediated prevention of nitrate tolerance is achieved through immediate inactivation of peroxinitrite. In: Moncada S, Stamler J, Gross S, Higgs EA (eds) The Biology of Nitric Oxide: Part 5. London, Portland Press Ltd., pp 199

    Google Scholar 

  6. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II Stimulated NADH and NADPH Oxidase Activity in Cultured Vascular Smooth Muscle Cells. Circ Res 74: 1141–1148

    PubMed  CAS  Google Scholar 

  7. Münzel T, Kurz S, Rajagopalan S, Thoenes M, Benington WR, Thompson JA, Freeman BA, Harrison DG (1996) Hydralyzine prevents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase. A new action for an old drug. J Clin Invest 98: 1465–1470

    Google Scholar 

  8. Gryglewsky RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456

    Article  Google Scholar 

  9. Huie RE, Padmaja S (1993) The reaction of rate of nitric oxide with superoxide. Free Rad Res Commun 18: 195–199

    Article  CAS  Google Scholar 

  10. Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268: L699–L722

    PubMed  CAS  Google Scholar 

  11. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266 (7): 4244–4250

    PubMed  CAS  Google Scholar 

  12. Braughler JM (1983) Soluble Guanylate Cyclase Activation by Nitric Oxide and its Reversal. Involvement of Sulfhydryl Group Oxidation and Reduction. Biochem Pharmacol 32: 811–818

    Article  PubMed  CAS  Google Scholar 

  13. Villa LM, Salas E, Darley-Usmar VM, Radomski MV, Moncada S (1994) Peroxynitrite induces both vasodilation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 91: 12383–12387

    Article  PubMed  CAS  Google Scholar 

  14. Feelisch M, Kelm M (1991) Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun 180: 286–293

    Article  PubMed  CAS  Google Scholar 

  15. Tsutamoto T, Kinoshita M, Ohbayashi Y, Wada A, Maeda Y, Adachi T (1994) Plasma arteriovenous cGMP difference as a useful indicator of nitrate tolerance in patients with heart failure. Circulation 90: 823–829

    PubMed  CAS  Google Scholar 

  16. Fink B, Bassenge E (1997) Unexpected, tolerance-devoid vasomotor and platelet actions of pentaerythrityl tetranitrate. J Cardiovasc Pharmacol 30: 831–836

    Article  PubMed  CAS  Google Scholar 

  17. Bassenge E, Fink B (1995) Untersuchungen zur Toleranzentwicklung unter PETN. In: Haustein K-O (ed) Pentaerithrityltetranitrat: Pharmakologische Besonderheiten für Praxis und Klinik. Darmstadt, Steinkopff Verlag, pp 15–17

    Google Scholar 

  18. Rosen GM, Freeman BA (1984) Detection of superoxide generated by endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 81: 7269–7273

    Article  PubMed  CAS  Google Scholar 

  19. Dikalov S, Khramtsov V, Zimmer G (1996) Determination of rate constants of the reactions of thiols with superoxide radical electron paramagnetic resonance: critical remarks on spectrophotometric approaches. Arch Biochem Biophys 326: 207–218

    Article  PubMed  CAS  Google Scholar 

  20. Dikalov S, Kirilyuk I, Grigor’ev I (1996) Spin trapping of O-, C-, and S-centered radicals and peroxynitrite by 2 H-imidazole-1-oxides. Biochem Biophys Res Commun 218: 616–622

    Article  PubMed  CAS  Google Scholar 

  21. Dikalov S, Skatchkov M, Bassenge E (1997) Quantification of Peroxynitrite, Superoxide, and Peroxyl Radicals by a New Spin Trap Hydroxylamine 1-Hydroxy-2,2,6,6-tetramethyl-4-oxo-pi- peridine. Biochem Biophys Res Commun 230 (I): 54–57

    Article  PubMed  CAS  Google Scholar 

  22. Dikalov S, Skatchkov M, Bassenge E (1997) Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxypyrrolidine and 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants. Biochem Biophys Res Commun 231 (3): 701–704

    Article  PubMed  CAS  Google Scholar 

  23. Hecker M, Mülsch A, Bassenge E, Förstermann U, Busse R (1994) Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications. Biochem J 299: 247–252

    PubMed  CAS  Google Scholar 

  24. Battle T, Arnal JF, Challah M, Michel JB (1994) Selective isolation of rat aortic wall layers and their cell types in culture-application to converting enzyme activity measurement. Tissue and Cell 26: 943–955

    Article  PubMed  CAS  Google Scholar 

  25. Campbell JH, Campbell GR (1987) Vascular smooth muslce cells in culture. In: Campbell JH, Campbell GR (eds) Vascular smooth muscle cells in culture. Florida, CRC Press, pp 15–21

    Google Scholar 

  26. Salvemini D, Pistelli A, Vane J (1993) Conversion of glyceryl trinitrate to nitric oxide in tolerant and non-tolerant smooth muscle and endothelial cells. Br J Pharmacol 108: 162–169

    PubMed  CAS  Google Scholar 

  27. Bassenge E, Fink B (1996) Tolerance to nitrates and simultaneous upregulation of platelet activity prevented by enhancing antioxidant state. Naunyn-Schmiedeberg’s Arch Pharmacol 353: 363–367

    Article  PubMed  CAS  Google Scholar 

  28. Weber AA, Neuhaus T, Seul C, Dusing R, Schror K, Sachinidis A, Vetter H (1996) Biotransformation of Glyceryl Trinitrate by Blood Platelets as Compared to Vascular Smooth Muscle Cells. European Journal of Pharmacology 309: 209–213

    Article  PubMed  CAS  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with phenol re-agent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  30. Rosen GM, Rauckman EJ (1984) Spin trapping of superoxide and hydroxyl radicals. Methods in Enzymology 105: 198–209

    Article  PubMed  CAS  Google Scholar 

  31. Moser U (1987) Uptake of ascorbic acid by leukocytes. Ann NY Acad Sci 498: 200–215

    Article  PubMed  CAS  Google Scholar 

  32. Evans RM, Currie L, Campbell A (1982) The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. British Journal of Nutrition 47: 473–482

    Article  PubMed  CAS  Google Scholar 

  33. Skatchkov M, Larina L, Larin A, Fink N, Bassenge E (1997) Urinary Nitrotyrosine Content as a Marker of Peroxynitrite-induced Tolerance to Organic Nitrates. J Cardiovasc Pharmacol Ther 2: 85–96

    Article  PubMed  CAS  Google Scholar 

  34. Dikalov S, Skatchkov M, Fink B, Bassenge E (1997) Quantification of superoxice radicals and peroxynitrite in vascular cells using oxidation of sterically hindered hydroxylamines and electron spin resonance. Nitric Oxide: Biol a Chem 1: 423–431

    Google Scholar 

  35. Bassenge E (1994) Coronary vasomotor responses: Role of endothelium and nitrovasodilators. Cardiovasc Drugs Ther 8: 601–610

    Article  PubMed  CAS  Google Scholar 

  36. Münzel T, Bassenge E (1996) Long-term angiotensin-converting enzyme inhibition with high-dose enalapril retards nitrate tolerance in large epicardial arteries and prevents rebound coronary vasoconstriction in vivo. Circulation 93: 2052–2058

    PubMed  Google Scholar 

  37. Bassenge E, Fink N, Skatchkov M, Fink B (1998) Dietary Supplement with Vitamin C Prevents Nitrate Tolerance. J Clin Inves 102: 67–71

    Article  CAS  Google Scholar 

  38. Dikalov S, Fink B, Sommer O, Bassenge E (1998) Formation of Reactive Oxygen Species in Various Vascular Cells During Nitroglycerin Metabolism. J Cardiovasc Pharmacol Ther 3: 1–11

    Article  Google Scholar 

  39. Needleman P, Johnson Jr EM (1973) Mechanism of tolerance development to organic nitrates. J Pharmacol Exp Ther 184: 709–715

    PubMed  CAS  Google Scholar 

  40. Waldmann R, Nieberding M, Walter U (1987) Vasodilator-stimulated protein phosphorylation in platelets is mediated by cAMP- and cGMP-dependent protein kinases. Eur J Biochem 167: 441–448

    Article  PubMed  CAS  Google Scholar 

  41. Schröder H, Leitman DC, Bennett BM, Waldman SA, Murad F (1988) Glyceryl Trinitrate-induced desensitization of Guanylate cyclase in cultured rat lung fibroblasts. J Pharmacol Exp Ther 245: 413–418

    PubMed  Google Scholar 

  42. Fink B, Dikalov S, Skatchkov M, Bassenge E (1997) Nitroglycerin and Oxidative Stress: New ESR Spin Trap for Superoxide Radical Detection in vivo. Circulation 96 (8): I–45 (Abstract)

    Google Scholar 

  43. Hess U, Windeck AK, Brosig H (1997) Chemosynthese von Pentaerithrityltetranitrat-Metaboliten und Perspektiven strukturanaloger Verbindungen. In: Jähnchen E, Schneider HT, Stalleicken D (eds) PETN — Strukturchemische, zellbiologische und klinische Perspektiven. Darmstadt, Steinkopff Verlag, S. 30

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Dr. Dietrich Steinkopff Verlag, Darmstadt

About this chapter

Cite this chapter

Fink, B., Dikalov, S., Schwemmer, M., Stalleicken, D., Bassenge, E. (1998). Im Gegensatz zu Nitroglyzerin führt Pentaerithrityltetranitrat zu deutlich geringerer Bildung von schädlichen Sauerstoffradikalen in Gefäßwandzellen. In: Mutschler, E., Schütz, A., Schneider, H.T. (eds) Pentaerithrityltetranitrat. Steinkopff. https://doi.org/10.1007/978-3-642-85444-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85444-6_1

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1142-2

  • Online ISBN: 978-3-642-85444-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics