Skip to main content

Verfahrenstechnische Konsequenzen von Einflußfaktoren auf biologische Bodensanierungsverfahren

  • Chapter
Praxis der mikrobiologischen Bodensanierung

Zusammenfassung

Verunreinigungen von Böden durch organische und anorganische Verbindungen haben sich großteils bereits in den vergangenen Jahrzehnten akkumuliert, erfolgen aber auch heute noch laufend durch unsachgemäße Ablagerung, Ausbringung von Schlämmen, insbesonders auf landwirtschaftlich genutzte Flächen, gasförmige Immissionen, sowie durch Unfälle. Allein in Österreich wurden von den Bundesländern gemäß Altlastensanierungsgesetz 1989 bisher etwa 18.000 Verdachtsflächen gemeldet, wovon etwa 1000 vom Umweltbundesamt bereits in den Verdachtsflächenkataster aufgenommen und 87 bereits zu Altlasten erklärt wurden. Europaweit schätzt man etwa 0,4% der Landfläche als kontaminiert ein (Thome-Kozmienski 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aldrich Katalog (1992) Handbuch Feinchemikalien. Aldrich Chemie GmbH & CoKG, Steinheim, Deutschland

    Google Scholar 

  • Arciero D, Vannelli T, Logan M, Hooper AB (1989) Degradation of trichloroethylene by the ammonium-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun 159: 640

    Article  CAS  Google Scholar 

  • Azoulay E, Heidemann MT (1963) Extraction and properties of alcohol dehydrogenase from Pseudomonas aeruginosa. Biochim Biophys Acta 73: 1

    Article  CAS  Google Scholar 

  • Baggi G, Catelani D, Galli E, Treccani V (1972). The microbial degradation of phenylalkanes. Biochem J 126: 1091

    CAS  Google Scholar 

  • Balfanz J, Rehm HJ (1990) Biodegradation of 4-chlorophenol by adsorptive immobilizied Alcaligenes sp. A7-2 in soil. Dechema Biotechnology Conference, Band 9

    Google Scholar 

  • Blasig R, Mauersberger S, Riege P, Schunck WH, Jockisch W, Franke P, Müller HG (1988) Degradation of long-chain n-alkanes by the yeast Candida maltosa. Appl Microbiol Biotechnol 28: 589

    Article  CAS  Google Scholar 

  • Block RN, Clark TP, Bishop N (1990) Biological treatment of soils contaminated by petroleum products. In: Kostecki PT, Calabrese EJ (eds) Petroleum contaminated soils 3. Lewis Publishers, Mi 48118, USA, pp 167–175

    Google Scholar 

  • Brunner W, Staub D, Leisinger T (1980) Bacterial degradation of dichloromethane. Appl Environ Microbiol 40: 950

    CAS  Google Scholar 

  • Brusseau GA, Tsien HC, Hanson RS, Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenäse activity. Biodegradation 1: 19

    Article  CAS  Google Scholar 

  • Budvari S (1989) The Merck Index, 1 lth ed. Merck & Co, Rahway, Nj, USA

    Google Scholar 

  • Capriel P, Haisch A, Khan SU (1985) Distribution and nature of bound (nonextractable) residues of atrazine in a mineral soil nine years after the herbicide application. J Agric Food Chem 33: 567

    Article  CAS  Google Scholar 

  • Catelani D, Sorlini C, Treccani V (1971) Metabolism of biphenyl by Claviceps purpurea. Experientia 27: 1173

    Article  CAS  Google Scholar 

  • Chakrabarty AM, Chou G, Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Nat Acad Sci 70: 1137

    Article  CAS  Google Scholar 

  • Crawford RL, Mohn WW (1985) Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb Technol 7: 617

    Article  CAS  Google Scholar 

  • D’ans Lax E (1967) Taschenbuch für Chemiker und Physiker. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Dechema (1992) Labormethoden zur Beurteilung der biologischen Bodensanierung (Hrsg: Klein J), Frankfurt/M.

    Google Scholar 

  • DIN 38409 H18 (1981) Summarische Wirkungs-und Stoffkenngrößen (Gruppe H), Bestimmung von Kohlenwasserstoffen Hl8

    Google Scholar 

  • Edgehill RU, Finn RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45: 1122

    CAS  Google Scholar 

  • EEC Directive 79/831 Annex V (1990) Adsorption Desorption in Soils. Draft for a comission proposal based on the results of the ring test and the meeting of the participants

    Google Scholar 

  • Ernst C, Rehm HJ (1990) Degradation of cyanuric acid by immobilized bacteria. Dechema Biotechnol Conference, Band 1990

    Google Scholar 

  • Figge K, Metzdorf U, Nevermann J, Schmiese J (1993) Bakterielle Mineralisierung von Dibenzofuran, Dibenzo-p-dioxin und 1,2,4,5-Tetrachlorbenzol in Böden. Z Umweltchem Ökotox 5: 122

    Article  CAS  Google Scholar 

  • Fisher P, Appleton J, Pemberton J (1978) Isolation and characterization of the pesticidedegrading plasmid pJPl from Alcaligenes paradoxus. J Bacteriol 135: 798

    CAS  Google Scholar 

  • Foerst W (1958) Ulmanns Enzyklopädie der technischen Chemie. Urban & Schwarzenberg

    Google Scholar 

  • Guerin W, Jones G (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol 54: 937

    CAS  Google Scholar 

  • Feinberg E, Ramage P, Trudgill P (1980) The degradation of n-alkylcycloalkanes by a mixed bacterial culture. J Gen Microbiol 121: 507

    CAS  Google Scholar 

  • Furukawa K, Chakrabarty AM (1982) Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol 44: 619

    CAS  Google Scholar 

  • Gibson DT, Hensley M, Yoshioka H, Mabry TJ (1970a) Formation of (+)-cis-2,3 dihydroxy-l-methyl-cyclohexan-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9: 1626

    Article  CAS  Google Scholar 

  • Gibson DT, Cardini GE, Maseies FC, Kallio, RE (1970b) Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9: 1631

    Article  CAS  Google Scholar 

  • Gibson DT, Gschwendt B, Yeh WK, Kobal VM (1973) Initial reactions in the oxidation of ethylbenzene by Pseudomoas putida. Biochemistry 12: 1520

    Article  CAS  Google Scholar 

  • Gibson DT, Mahadevan V, Davey JF (1974) Bacterial metabolism of para-und meta-xylene: oxidation of the aromatic ring. J Bacteriol 119: 930

    CAS  Google Scholar 

  • Hartmans S, de Bont JAM, Tramper J, Luyben KChAM (1985) Bacterial degradation of vinyl chloride. Biotechnol Lett 7: 383

    Article  CAS  Google Scholar 

  • Hartmans S, Schmuckle A, Cook A, Leisinger T (1986) Methylchloride: Naturally occurring toxicant and C-l growth substrate. J Gen Microbiol 132: 1139

    CAS  Google Scholar 

  • Harker AR, Kim Y (1990) Trichloroethylene degradation by two independent aromaticdegrading pathways in Alcaligenes eutrophus JMP 134. Appl Environ Microbiol 56: 1179

    CAS  Google Scholar 

  • Heitkamp M, Freeman J, Miller D, Cerniglia C (1988) Pyrene Degradation by a Mycobacterium sp.:Identification of ring oxidation and ring fission products. Appl Environ Microbiol 54: 2556

    CAS  Google Scholar 

  • Hogn T, Jaenicke L (1972) Benzene metabolism of Moraxella species. Eur J Biochem 30: 369

    Article  CAS  Google Scholar 

  • Janssen D, Scheper A, Dijkhuizen L, Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl Environ Microbiol 49: 673

    CAS  Google Scholar 

  • Janssen D, van den Wijngaard A, van der Waarde J, Oldenhuis R (1992) Biochemistry and kinetics of aerobic degradation of chlorinated aliphatic hydrocarbons. In: Olfenbuttel R (ed) Proceedings of the in situ and on site bioremediation symposium. Butterworth Publ

    Google Scholar 

  • Kelley I, Cerniglia C (1991) The metabolism of fluoranthene by a species of Mycobacterium. J Industrial Microbiol 7: 19

    Article  CAS  Google Scholar 

  • Kennedy RS, Finnerty WR (1975) Microbial assimilation of hydrocarbons. II. Intracytoplasmic membrane induction in Acinetobacter sp. Arch Microbiol 102: 85

    CAS  Google Scholar 

  • Knowles CJ (1988) Cyanide utilisation and degradation by microorganisms. In: Cyanide compounds in biology. CIBA foundation symp 140, Wiley, Chichester

    Google Scholar 

  • Kohler-Staub D, Leisinger T (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DMS. J Bacteriol 162: 676

    CAS  Google Scholar 

  • Koliander W (1991) Persönliche Mitteilung. ÖMV, Schwechat

    Google Scholar 

  • Kröckel L, Focht D (1987) Construction of chlorobenzene-utilizing recombinants by progenetive manifestation of a rare event. Appl Environ Microbiol 53: 2470

    Google Scholar 

  • Lebeault JM, Roche B, Duvnjak Z, Azoulay E (1970) Isolation and study of the enzymes involved in the metabolism of hydrocarbons by Candida tropicalis. Arch Microbiol 72: 140

    Article  CAS  Google Scholar 

  • Liebmann D (1962) Öle und Detergenzien in Wasser und Abwasser. Münchner Beiträge zur Abwasser-, Fischerei-und Flußbiologie, Band 9. Oldenburg Verlag, München

    Google Scholar 

  • Martinsen C, Zachariah P (1978) Growth of various bacteria on poly cyclic aromatic hydrocarbons and N-2-fluorenylacetamide. J Appl Bacteriology 44: 365

    Article  CAS  Google Scholar 

  • Murray A, Hall R, Griffin M (1980) Microbial metabolism of alicyclic hydrocarbons: Cyclohexane catabolism by a pure strain of Pseudomonas sp. J Gen Microbiol 120: 89

    Google Scholar 

  • Nelson MJK, Montgomery SO, Pritchard PH (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54: 604

    CAS  Google Scholar 

  • Nieder M, Shapiro J (1975) Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: Monoterminal oxidation of alkanes and fatty acids. J Bacteriol 122: 93

    CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57: 7

    CAS  Google Scholar 

  • Oldenhuis R, Vink RLJM, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenäse. Appl Environ Microbiol 55: 2819

    CAS  Google Scholar 

  • Ooyama J, Foster JW (1965) Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie van Leeuwenhoek 31: 45

    Article  CAS  Google Scholar 

  • Pieper D, Reineke W, Engesser KH, Knackmuss HJ (1988) Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150: 95

    Article  CAS  Google Scholar 

  • Ploder W (1991) Persönliche Mitteilung. ÖMV, Schwechat

    Google Scholar 

  • Rasche ME, Hicks RE, Hyman MR, Arp DJ (1990) Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J Bacteriol 172: 5368

    CAS  Google Scholar 

  • Rasche ME, Hyman MR, Arp DJ (1990) Biodegradation of halogenated hydrocarbon fumigants by nitrifying bacteria. Appl Environ Microbiol 56: 2568

    CAS  Google Scholar 

  • Rippen G (1991) Handbuch Umweltchemikalien. Ecomed Verlag

    Google Scholar 

  • Roche B, Azoulay E (1969) Regulation des alcool-deshydrogenases chez Saccharomyces cerevisiae. Eur J Biochem 8: 426

    Article  CAS  Google Scholar 

  • Rollinson G, Jones R, Meadows MP, Harris RE, Knowles CJ (1987) The growth of a cyanide utilising strain Pseudomonas fluorescens in liquid culture on nickel cyanide as a source of nitrogen. FEMS Microbiol Letts 40: 199

    Article  CAS  Google Scholar 

  • Schmidt E, Hell wig M, Knackmuss HJ (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl Environ Microbiol 46: 1038

    CAS  Google Scholar 

  • Scholtz R, Schmuckle A, Cook AM, Leisinger T (1987) Degradation of eighteen 1-monohaloalkanes by Arthrobacter sp. strain HAL J Gen Microbiol 133: 267

    CAS  Google Scholar 

  • Schwien U, Schmidt E, Knackmuss HJ, Reinecke W (1988) Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13: fate of 3,5-dichlorocatechol. Arch Microbiol 150: 78

    CAS  Google Scholar 

  • Shields MM, Montgomery SO, Chapman PJ, Cuskey SM, Pritchard PH (1989) Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4. Appl. Environ Microbiol 55: 1624

    CAS  Google Scholar 

  • Sorlini C (1972) Ricerche sulla degradazione microbica del tert-butilbenzene. Atti XVI Congr Soc Ital Microbiol 1: 405

    Google Scholar 

  • Stafford DA, Callely AG (1969) The utilisation of thiocyanate by a heterotrophic bacterium. J Gen Microbiol 55: 285

    CAS  Google Scholar 

  • Steirer T (1993) Anforderungen an die Altlastensanierung. Technologieüberblick bei geförderten Sanierungsvorhaben. Vortrag Seminar Neue Techn. zur Erkundung, Beurteilung und Sanierung von Altlasten. Bank Austria Wien

    Google Scholar 

  • Stucki G, Gälli R, Ebersold HR, Leisinger T (1981) Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch Microbiol 130: 366

    Article  CAS  Google Scholar 

  • Sutherland J, Selby A, Freeman J, Evans F, Cerniglia C (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57: 3310

    CAS  Google Scholar 

  • Takahashi J (1980) Production of intracellular and extracellular protein from n-butane by Pseudomonas butanovora sp. nov. Adv Appl Microbiol 26: 117

    Article  CAS  Google Scholar 

  • Tassin JP, Vandecasteele JP (1972) Separation and characterization of long-chain alcohol dehydrogenase isoenzymes from Pseudomoas aeruginosa. Biochim Biophys Acta 276: 31

    CAS  Google Scholar 

  • Thome-Kozmienski (1988) Altlasten. EF-Verlag für Energie und Umwelttechnik, Berlin

    Google Scholar 

  • Treccani V, Walker N, Wiltshire GH (1954) The metabolism of naphthalene by soil bacteria. J Gen Microbiol 11: 341

    CAS  Google Scholar 

  • Tro wer M, Buckland M Higgings R, Griffin M (1985) Isolation and characterization of a cyclohexane-metabolizing Xanthobacter sp. Appl Environ Microbiol 49: 1282

    CAS  Google Scholar 

  • Tsien HC, Brusseau GA, Hanson RS, Wackett LP (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55: 3155

    CAS  Google Scholar 

  • Vannelli T, Logan M, Arciero DM, Hooper AB (1989) Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 56: 1169

    Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR, Hanson RS (1989) Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55: 2960

    CAS  Google Scholar 

  • Wackett L, Gibson D (1988) Degradation of trichloroethylene by toluene dioxygenäse in whole-cell studies with Pseudomonas putida Fl. Appl Environ Microbiol 54: 1703

    CAS  Google Scholar 

  • Walker N, Wiltshire GH (1953) The breakdown of naphthalene by a soil bacterium. J Gen Microbiol 8: 273

    CAS  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1990) Biodegradation of pyrene by Rhodococcus sp. PI. Posterpräsentation, Tagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie und der Sektion 1 der Deutschen Gesellschaft für Hygiene und Mikrobiologie, 25.-28. März 1990 in Berlin

    Google Scholar 

  • Wegner EH (1973) Microbial conversion of naphthalene base hydrocarbons. US Patent 3,755,080

    Google Scholar 

  • Weissenf els WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32: 479

    Article  CAS  Google Scholar 

  • Welzbacher U (1993) Neue Datenblätter für gefährliche Arbeitsstoffe nach der Gefahrenstoffverordnung. WWEKA Fachverlag, Augsburg

    Google Scholar 

  • Werner P, Kühn W (1989) Nutzungsbezogene Qualitätsziele im Grundwasserbereich. In: Deutscher Verein des Gas-und Wasserfaches eV (Hrsg) Altlasten auf ehemaligen Gaswerksgeländen. Wirtschafts-und Verlagsgesellschaft Gas und Wasser mbH, Bonn, pp 47–61

    Google Scholar 

  • White JM, Jones DD, Huang D, Gauthier JJ (1988) Conversion of cyanide to formate and ammonia by a pseudomonad obtained from industrial wastewater. J Industr Microbiol 3: 263

    Article  CAS  Google Scholar 

  • Zylstra G, Gibson DT (1989) Toluene degradation by Pseudomonas putida Fl. J Biol Chem 264: 14940

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braun, R., Bauer, E., Pennerstorfer, C., Kraushofer, G. (1995). Verfahrenstechnische Konsequenzen von Einflußfaktoren auf biologische Bodensanierungsverfahren. In: Margesin, R., Schneider, M., Schinner, F. (eds) Praxis der mikrobiologischen Bodensanierung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85196-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85196-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59014-9

  • Online ISBN: 978-3-642-85196-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics