Magneto-Excitons in CdTe/(CdMn)Te Quantum Wells

  • W. Ossau
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 101)


We have performed low temperature photoluminescence and photoluminescence excitation measurements on CdTe/(CdMn)Te single quantum wells in magnetic fields up to 9.5 T. The analysis of the temperature and magnetic field dependence of the splitting of the heavy-hole exciton in Faraday configuration shows that the splitting of the exciton in the nonmagnetic layer is caused by exchange interaction with the Mn++ ions in the barrier. From the asymmetric behaviour of the splitting of the heavy-hole excitonic recombination we identify a Type-I to Type-II transition of heterostructures with small manganese concentration in the barrier. The asymmetric splitting furthermore allows to determine the valence band offset to 20 ± 5 % of the total bandgap discontinuity. In addition we deduce from the finestructure of the spectra the binding energy of the heavy-hole exciton as a function of the well width.


Anisotropy Manganese Recombination GaAs ZnSe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Esaki, IEEE Trans. Quantum Electron. QE-22 (1985) 1611.Google Scholar
  2. [2]
    W. Ossau, S. Fischer and R.N. Bicknell-Tassius, J. Crystal Growth 101 (1990) 905 and references therein.CrossRefGoogle Scholar
  3. [3]
    R.R. Galazka, S. Nagata and P.H. Keesom, Phys. Rev. B22 (1980) 3344.Google Scholar
  4. [4]
    N. Bottka, J. Stankiewicz, W. Giriat, J. Appl. Phys. 52 (1981) 4189.CrossRefGoogle Scholar
  5. [5]
    N. Magnea, F. Dal’bo, C. Fontaine, A. Million, J.P. Gaillard, L.S. Dang, Y. Merle d’Aubigné and S. Tatarenko, J. Crystal Growth 81 (1987) 501.CrossRefGoogle Scholar
  6. [6]
    S.K. Chang, A.V. Nurmikko, J.W. Wu, L.A. Kolodziejski and R.L. Gunshor, Phys. Rev. B 37 (1988) 1191.Google Scholar
  7. [7]
    TJ. Gregory, C.R. Hilton, J.E. Nicholls, W.E. Hagston, J.J. Davies, B. Lunn and D.E. Ashenford, Journal of Crystal Growth 101 (1990) 584.CrossRefGoogle Scholar
  8. [8]
    R.L. Harper, R.N. Bicknell, D.K. Blanks, N.C. Giles, J.F. Schetzina, Y.R. Lee and A.K. Ramdas, J. appl. Phys. 65 (1989) 624.CrossRefGoogle Scholar
  9. [9]
    A. Wasiela, Y. Merle d’Aubigné, J.E. Nicholls, D.E. Ashenford and B. Lunn, Solid State Communications 76 (1990) 263.CrossRefGoogle Scholar
  10. [10]
    W. Heimbrodt, O. Goede, H.E. Gumlich, H. Hoffmann, U. Stutenbäumer, B. Lunn and D.E. Ashenford, Journal of Luminescence, in print.Google Scholar
  11. [11]
    J. Tersoff, Phys. Rev. Lett. 56 (1986) 2755.CrossRefGoogle Scholar
  12. [12]
    N.E. Christensen, I. Gorczyca, O.B. Christensen, U. Schmid and M. Cardona, Journal of Crystal Growth 101 (1990) 318.CrossRefGoogle Scholar
  13. [13]
    X.C. Zhang, S.K. Chang, A.V. Nurmikko, L.A. Kolodziejski, R.L. Gunshor and Datta, Phys. Rev. B31 (1985) 4056.Google Scholar
  14. [14]
    W. Ossau, T. A. Kuhn and R.N. Bicknell-Tassius Journal of Crystal Growth 101 (1990) 135.CrossRefGoogle Scholar
  15. [15]
    B. Kuhn, W. Ossau, to be published.Google Scholar
  16. [16]
    J.A. Gaj, R. Planel and F. Fishman, Solid State Commun. 29 (1979) 435.CrossRefGoogle Scholar
  17. [17]
    A. Krämer, Diplomathesis, University Würzburg, unpublished.Google Scholar
  18. [18]
    X. Liu, A. Petrou, J. Warnock, B.T. Jonker, G.A. Prinz and J.J. Krebs, Phys. Rev. Letters 63 (1989) 2280.CrossRefGoogle Scholar
  19. [19]
    E. Vornberger, W. Ossau, A. Waag, R.N. Bicknell-Tassius and G. Landwehr, Proceedings of the 20th Int. Conf. on the Physics of Semiconductors 2 (Aug. 1990) 1569, Thessaloniki, Greece.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. Ossau
    • 1
  1. 1.Physikalisches InstitutUniversität WürzburgWürzburgGermany

Personalised recommendations