Magneto-Optic and Quantum Transport Studies of MBE InSb and InAs

  • R. A. Stradling
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 101)


The MBE growth and doping of the narrow gap materials InSb and InAs are studied. Magneto-optical experiments are extremely informative in the case of high purity films of InAs showing the presence both of a low mobility accumulation layer and a high mobility bulk region and enabling the galvanomagnetic properties to be interpreted in terms of parallel conductance involving the two regions. Silicon can be incorporated fully as a donor up to concentrations of 3×1018cm−3 in the case of InSb and 6×1019 cm−3 with InAs. The control of silicon doping is utilised to prepare high-concentration spike-doped samples and nipi structures showing enhanced subband gap absorption, large optical non-linearities and increased carrier lifetimes. Shubnikov-de Haas measurements are undertaken with the spike-doped samples to determine the subband occupancy and to investigate possible dopant diffusion.


Landau Level Hall Mobility Shallow Donor Dopant Diffusion Galvanomagnetic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Droopad, S.D. Parker, E. Skuras, R.L. Williams, R.A. Stradling, R.B. Beall & J.J. Harris Vol. 87 Springer Series in Solid State Sciences pl99 (1989).Google Scholar
  2. [2]
    S.D. Parker, R.L. Williams, R. Droopad, R.A. Stradling, K.W.J. Barnham, S.N. Holmes, J. Laverty, C.C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan & D.W. Pashley Semicond. Sci. & Tech. 4 663 (1989).Google Scholar
  3. [3]
    S.N. Holmes, R.A. Stradling, P.D. Wang, R. Droopad, S.D. Parker & R.L. Williams Semicond. Sci. & Tech. 4 303 (1989).Google Scholar
  4. [4]
    C.M. Sotomayor-Torres & R.A. Stradling Semicond. Sci. & Tech. 2 323 (1986).Google Scholar
  5. [5]
    H.A. Washburn, J.R. Sites & H.H. Wieder J. App. Phys. 50 4872 (1979).CrossRefGoogle Scholar
  6. [6]
    H. Reisenger, H. Schaber & R.E. Doezema Phys. Rev. B24 5960 (1981).Google Scholar
  7. [7]
    H.H. Wieder App. Phys. Lett. 25 206 (1974).CrossRefGoogle Scholar
  8. [8]
    W. Walukiewicz MRS Symposium Proceedings Vol 104 483 (1988).CrossRefGoogle Scholar
  9. [9]
    R.L. Williams, E. Skuras, R.A. Stradling, R. Droopad, S.N. Holmes & S.D. Parker Semicond. Sci. & Tech. 5 S338 (1990).Google Scholar
  10. [10]
    E.A. Johnson & A. Mackinnon Semicond. Sci & Tech. 6 S189 (1990).Google Scholar
  11. [11]
    C.C. Phillips App. Phys. Lett. 56 151 (1990).CrossRefGoogle Scholar
  12. [12]
    C. Hodge, C.C. Phillips, R.H. Thomas, S.D. Parker, R.L. Williams & R. Droopad. Semicond. Sci & Tech. 5 S319 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. A. Stradling
    • 1
  1. 1.Physics Department and Interdisciplinary Research Centre in Semiconductor MaterialsImperial CollegeLondonUK

Personalised recommendations