Skip to main content

Energy Shifts, Intensity Minima, and Line Splitting in the Optical Recombination of Electrons in the Integer and Fractional Quantum Hall Regimes

  • Conference paper
High Magnetic Fields in Semiconductor Physics III

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 101))

Abstract

Energy shifts in the electron-hole recombination energy and minima in the peak intensity at integer and fractional filling factors occur in the luminescence from ultra high mobility GaAs single quantum wells and heterojunctions. At Landau and spin gaps the magnetic field regions of the energy shifts and intensity minima broaden as the temperature is reduced, in consort with the transport Hall resistance. This relates the optical anomalies directly to the position of the Fermi energy in localized transport states. In the fractional quantum Hall regime a sharp intensity minimum and peak shift is observed at v = 2/3, while higher-field fractions are characterized by a splitting in the luminescence, with the higher-energy component dominant at higher fields. The response of the 2D electron gas to the perturbation of the hole is an important consideration, and is studied by varying the quantum well width, whence it is found that correlation effects are reduced relative to vertex corrections as the well width is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  CAS  Google Scholar 

  2. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  Google Scholar 

  3. T. Ando and Y. Murayama, J. Phys. Soc. Jpn. 54, 1519 (1985).

    Article  CAS  Google Scholar 

  4. S. Das Sarma and X.C. Xie, Phys. Rev. Lett. 61, 738 (1988).

    Article  CAS  Google Scholar 

  5. B.B. Goldberg, D. Heiman, A. Pinczuk, C.W. Tu, A.C. Gossard and J.H. English, Surf. Sci. 196, 209 (1988).

    Article  CAS  Google Scholar 

  6. D. Heiman, B.B. Goldberg, A. Pinczuk, C.W. Tu, A.C. Gossard and J.H. English, Phys. Rev. Lett. 61, 605, (1988).

    Google Scholar 

  7. I.V. Kukushkin and V.B. Timofeev, Pis’ma Zh. Eksp. Teor. Fiz. 44, 179 (1986) [JETP Lett. 44, 228 (1986)].

    CAS  Google Scholar 

  8. I.V. Kukushkin and V.B. Timofeev, Surf. Sci. 196, 196 (1988).

    Article  CAS  Google Scholar 

  9. B. B. Goldberg, D. Heiman, A. Pinczuk, L. Pfeiffer, and K. West, to appear in Phys. Rev. Lett.; A. J. Turberfield, S. R. Haynes, P. A. Wright, R. A. Ford, R. G. Clark, J. F. Ryan, J. J. Harris, and C. T. Foxon, to appear in Phys. Rev. Lett.; I. V. Kukushkin, A. S. Plaut, K. v. Klitzing, K. Ploog, H. Buhmann, W. Joss, G. Martinez, and V. B. Timofeev, 20th ICPS.

    Google Scholar 

  10. B.B. Goldberg, D. Heiman, M.J. Graf, D.A. Broido, A. Pinczuk, C.W. Tu, J.H. English, and A.C. Gossard, Phys. Rev. B 38, 10131 (1988).

    Google Scholar 

  11. G.E.W. Bauer, Phys. Rev. Lett. 64, 60 (1990).

    Article  CAS  Google Scholar 

  12. C.H. Perry, J.M. Worlock, M.C. Smith, and A. Petrou, in High Magnetic Fields in Semiconductor Physics, ed. by G. Landwehr (Springer-Verlag, Berlin, 1987), p. 202; M.S. Skolnick, K.J. Nash, S.J. Bass, P.E. Simmonds, and M.J. Kane, Sol. State Comm. 67, 637 (1988).

    Google Scholar 

  13. H. Yoshimura and H. Sakaki, Phys. Rev. B 39, 13024 (1989).

    Google Scholar 

  14. Excited-state recombination in pseudomorphic InGaAs also appears to show a correlation with magnetotransport; W. Chen, M. Fritze, A. V. Nurmikko, D. Ackley, C. Colvard, and N. Nouri, Phys. Rev. Lett. 62, 1000 (1990).

    Google Scholar 

  15. B. B. Goldberg, D. Heiman, A. Pinczuk, Phys. Rev. Lett. 10, 1102 (1989).

    Article  Google Scholar 

  16. T. Uenoyama and L.J. Sham, Phys. Rev. B 39, 11044 (1989).

    Google Scholar 

  17. S. Katayama and T. Ando, Sol. State Comm. 70, 97 (1989).

    Article  Google Scholar 

  18. S. Schmitt-Rink, D.S. Chemla and D.A.B. Miller, Adv. in Phys. 38, 89 (1989).

    Article  CAS  Google Scholar 

  19. J. K. Jain, Phys. Rev. Lett. 63 199, (1989).

    Article  Google Scholar 

  20. M. Dahl, et al. to be published.

    Google Scholar 

  21. Yu.A. Bychkov and É.I. Rashba, Zh. Eksp. Teor. Fiz. 96, 757 1989; [Sov. Phys. JETP 69, 430 1989].

    Google Scholar 

  22. R. L. Willett, H. Störmer, D. Tsui, L. Pfeiffer, K. West, and K. Baldwin, Phys. Rev. B 38 7881 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, B.B., Heiman, D., Pinczuk, A., Pfeiffer, L., West, K. (1992). Energy Shifts, Intensity Minima, and Line Splitting in the Optical Recombination of Electrons in the Integer and Fractional Quantum Hall Regimes. In: Landwehr, G. (eds) High Magnetic Fields in Semiconductor Physics III. Springer Series in Solid-State Sciences, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84408-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84408-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84410-2

  • Online ISBN: 978-3-642-84408-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics