Skip to main content

Subunit Interaction of Adenylylated Glutamine Synthetase

  • Chapter
Chemical Recognition in Biology

Part of the book series: Molecular Biology, Biochemistry and Biophysics ((MOLECULAR,volume 32))

Abstract

The activity of Escherichia coli glutamine synthetase (GS) is regulated by the cyclic adenylylation and deadenylylation of a unique tyrosyl group in each subunit (for review, see Stadtman and Ginsburg 1974). As illustrated in Fig. 1, the adenylylation reaction is catalyzed by an adenylyltransferase (AT) and involves transfer of adenylyl groups from ATP to the enzyme with the concomitant formation of PPi. Since GS is composed of twelve identical subunits, and adenylylated subunits are catalytically inactive under most physiological conditions, the catalytic potential of the enzyme is nearly inversely proportional to the average number, n̅, of covalently bound adenylyl groups per enzyme molecule (Kingdon et al. 1967). Although the adenylylation reaction is reversible in the presence of PPi (Mantel and Holzer 1970), removal of the adenylyl group from GS under physiological conditions is achieved by phosphorolysis of the adenylyl-O-tyrosyl bond to yield ADP and unmodified GS (Anderson and Stadtman 1970). Because the adenylylation and deadenylylation reactions are catalyzed at separate, noninteracting catalytic sites on a single adenylyltransferase (Anderson et al. 1970; Rhee et al. 1978; Hennig and Ginsburg 1971), it is evident that in the absence of appropriate regulation the two reactions will be tightly coupled resulting simply in senseless phosphorolysis of ATP to ADP and PPi. As shown if Fig. 1, indiscriminate coupling of the adenylylation and deadenylylation reaction is prevented by the action of Shapiro’s regulatory protein, PII, (Shapiro 1969) which also exists in an unmodified form, PIIA, and a modified (uridylylated) form, PIID (Brown et al. 1971; Mangum et al. 1973; Adler et al. 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler SP, Purich D, Stadtman ER (1975) Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J Biol Chem 250: 6264–6272

    PubMed  CAS  Google Scholar 

  • Anderson WB, Stadtman ER (1970) Glutamine synthetase deadenylylation: A phosphorolytic reaction yielding ADP as nucleotide product. Biochem Biophys Res Commun 41: 704–709

    Article  PubMed  CAS  Google Scholar 

  • Anderson WB, Hennig SB, Ginsburg A, Stadtman ER (1970) Association of ATP: Glutamine synthetase adenylyltransferase activity with the PI component of the glutamine synthetase deadenylylation system Proc Natl Acad Sci USA 67: 1417–1424

    Article  PubMed  CAS  Google Scholar 

  • Bancroft S, Rhee SG, Neumann C, Kuster S (1978) Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium. J Bacterial 134: 1046–1055

    CAS  Google Scholar 

  • Brown MS, Segal A, Stadtman ER (1971) Modulation of glutamine synthetase adenylylation and deadenylylation is mediated by metabolic transformation of the PII-regulatory protein. Proc Natl Acad Sci USA 68: 2949–2953

    Article  PubMed  CAS  Google Scholar 

  • Chock PB, Stadtman ER (1978) Superiority of interconvertible enzyme cascades in metabolic regulation: Analyses of multicyclic systems. Proc Natl Acad Sci USA 74: 2766–2770

    Article  Google Scholar 

  • Ciardi JE, Cimino F, Stadtman ER (1973) Multiple forms of glutamine synthetase. Hybrid formation by association of adenylylated and unadenylylated subunits. Biochemistry 12: 4321–4330

    Article  PubMed  CAS  Google Scholar 

  • Engleman EG, Francis SH (1978) Cascade control of E. coli glutamine synthetase. II. Metabolite regulation of the enzymes in the cascade. Arch Biochem Biophys 191: 602–612

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg A, Yeh J, Hennig SB, Denton MD (1970) Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli. Biochemistry 9: 633–649

    Article  PubMed  CAS  Google Scholar 

  • Hennig SB, Ginsburg A (1971) ATP: Glutamine synthetase adenylyltransferase from Escherichia coli: Purification and properties of a low molecular weight form. Arch Biochem Biophys 144: 611–627

    Article  PubMed  CAS  Google Scholar 

  • Hohman RJ, Stadtman ER (1978) Use of AMP specific antibodies to differentiate between adenyl-ylated and unadenylylated E. coli glutamine synthetase. Biochem Biophys Res Commun 82: 865–870

    Article  PubMed  CAS  Google Scholar 

  • Kingdon HS, Shapiro BM, Stadtman ER (1967) Regulation of glutamine synthetase, VIII. ATP: Glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc Natl Acad Sci USA 58: 1703–1710

    Article  PubMed  CAS  Google Scholar 

  • Mangum JH, Magni G, Stadtman ER (1973) Regulation of glutamine synthetase adenylylation and deadenylylation of enzymic uridylylation and deuridylylation of the PII regulatory protein. Arch Biochem Biophys 158: 514–525

    Article  PubMed  CAS  Google Scholar 

  • Mantel M, Holzer H (1970) Reversibility of the ATP: Glutamic synthetase adenylyltransferase reaction. Proc Natl Acad Sci USA 65: 660–667

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Park R, Chock PB, Stadtman ER (1978) Allosteric regulation of monocyclic interconvertible enzyme cascade systems: Use of E. coli glutamine synthetase as an experimental model. Proc Natl Acad Sci USA 75: 3138–3142

    Article  PubMed  CAS  Google Scholar 

  • Segal A, Brown MS, Stadtman ER (1974) Metabolite regulation of the state of adenylylation of glutamine synthetase. Arch Biochem Biophys 161: 319–327

    Article  CAS  Google Scholar 

  • Senior P (1975) Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: Studies with the continuous culture technique. J Bacteriol 123: 407–418

    PubMed  CAS  Google Scholar 

  • Shapiro BM (1969) The glutamine synthetase deadenylylation system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements. Biochemistry 8: 659–670

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Chock PB (1978a) Interconvertible enzyme cascades in metabolis regulation. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation, vol 13, pp 53–95. Academic Press, New York

    Google Scholar 

  • Stadtman ER, Chock PB (1978b) Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems. Proc Natl Acad Sci USA 74: 2761–2765

    Article  Google Scholar 

  • Stadtman ER, Ginsburg A (1974) The glutamine synthetase of Escherichia coli: Structure and control. In: Boyer PD (ed) The enzymes, vol X, 3rd edn, pp 755–807. Academic Press, New York

    Google Scholar 

  • Stadtman ER, Ciardi JE, Smyrniotis PZ, Segal A, Ginsburg A, Adler SP (1975) Role of adenylylated glutamine synthetase enzymes and uridylylated regulatory protein enzymes in the regulation of glutamine synthetase activity in Escherichia coli. In: Markert CL (ed) Isoenzymes, vol II, pp 715–732. Academic Press, New York

    Google Scholar 

  • Stadtman ER, Smyrniotis PZ, Davis JN, Wittenberger M (1979a) Enzymic procedures for determining the average state of adenylylation of Escherichia coli glutamine synthetase. Arch Biochem 95: 275–285

    Article  CAS  Google Scholar 

  • Stadtman ER, Chock PB, Rhee SG (1979b) Allosteric control of E. coli glutamine synthetase is mediated by a bicyclic nucleotidylation cascade system. In: Russell TR, Brew K, Sultz J, Faber H (eds) XI Miami Winter Symposium. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Stadtman, E.R., Hohman, R.J., Davis, J.N., Wittenberger, M., Chock, P.B., Rhee, S.G. (1980). Subunit Interaction of Adenylylated Glutamine Synthetase. In: Chapeville, F., Haenni, AL. (eds) Chemical Recognition in Biology. Molecular Biology, Biochemistry and Biophysics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81503-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81503-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81505-8

  • Online ISBN: 978-3-642-81503-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics