Skip to main content

Variable-Complexity Multidisciplinary Design Optimization Using Parallel Computers

  • Conference paper
Computational Mechanics ’95

Abstract

The use of multidisciplinary optimization techniques in aerospace vehicle design often is limited because of the significant computational expense incurred in the analysis of the vehicle and its many systems. In response to this difficulty, a variable-complexity modeling approach, involving the use of refined and computationally expensive models together with simple and computationally inexpensive models has been developed [1]. This variable-complexity technique has been previously applied to the combined aerodynamic-structural optimization of subsonic transport aircraft wings and the aerodynamic-structural optimization of the High Speed Civil Transport (HSCT) [2]–[4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger, E. R., Hutchison, M. G., Rais-Rohani, M., Haftka, R. T., and Grossman, B., “Variable-Complexity Design of a Transport Wing,” Intl. J. Systems Automation: Res. and Appl. (SARA), No. 2, 1992, pp. 87–113.

    Google Scholar 

  2. Hutchison, M. G., Unger, E. R., Mason, W. H., Grossman, B., and Haftka, R. T., “Variable-Complexity Aerodynamic Optimization of an HSCT Wing Using Structural Wing-Weight Equations,” J. Aircraft, vol. 31, No. 1, 1994, pp. 110–116.

    Article  Google Scholar 

  3. Hutchison, M. G., Unger, E. R., Mason, W. H., Grossman, B., and Haftka, R. T., “Aerodynamic Optimization of an HSCT Wing Using Variable-Complexity Modeling,” AIAA Paper 93–0101, Jan. 1993.

    Google Scholar 

  4. Dudley, J., Huang, X., MacMillin, P. E., Grossman, B., Haftka, R. T., and Mason, W. H., “Multidisciplinary Optimization of the High-Speed Civil Transport,” AIAA Paper 95–0124, Jan. 1995.

    Google Scholar 

  5. Giunta, A. A., Dudley, J. M., Narducci, R., Grossman, B., Haftka, R. T., Mason, W. H., and Watson, L. T., “Noisy Aerodynamic Response and Smooth Approximations in HSCT Design,” AIAA Paper 94–4376, Sept. 1994.

    Google Scholar 

  6. Healy, M. J., Kowalik, J. S, and Ransay, J. W., “Airplane Engine Selection by Optimization on Surface Fit Approximations,” J. Aircraft, vol. 12, No. 7, 1975, pp. 593–599.

    Article  Google Scholar 

  7. Engelund, W. C, Stanley, D. O., Lepsch, R. A., McMillin, M. L., and Unal, R., “Aerodynamic Configuration Design Using Response Surface Methodology Analysis,” AIAA Paper 93–3967, Aug. 1993.

    Google Scholar 

  8. Hutchison, M. G., “Multidisciplinary Optimization of High-Speed Civil Transport Configurations Using Variable-Complexity Modeling,” Ph.D. Dissertation, VPI&SU, March 1993.

    Google Scholar 

  9. Craidon, C. B., “Description of a Digital Computer Program for Airplane Configuration Plots,” NASA TM X-2074, 1970.

    Google Scholar 

  10. Harris, R. V., Jr., “An Analysis and Correlation of Aircraft Wave Drag,” NASA TM X-947, 1964.

    Google Scholar 

  11. Carlson, H. W., and Miller, D. S., “Numerical Methods for the Design and Analysis of Wings at Supersonic Speeds,” NASA TN D-7713, 1974.

    Google Scholar 

  12. Carlson, H. W., and Mack, R. J., “Estimation of Leading-Edge Thrust for Supersonic Wings of Arbitrary Planforms,” NASA TP-1270, 1978.

    Google Scholar 

  13. Carlson, H. W., Mack, R. J., and Barger, R. L., “Estimation of Attainable Leading-Edge Thrust for Wings at Subsonic and Supersonic Speeds,” NASA TP-1500, 1979.

    Google Scholar 

  14. Box, M. J. and Draper, N. R., “Factorial Designs, the |XIX| Criterion, and Some Related Matters,” Technomeirics, vol. 13, No. 4, 1971, pp. 731–742.

    Article  MATH  Google Scholar 

  15. Lawley, D. N., and Maxwell, A. E., Factor Analysis as a Statistical Method, American Elsevier Publishing Co., New York, N. Y., 1971, pp. 15–18.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giunta, A.A. et al. (1995). Variable-Complexity Multidisciplinary Design Optimization Using Parallel Computers. In: Atluri, S.N., Yagawa, G., Cruse, T. (eds) Computational Mechanics ’95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79654-8_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79654-8_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79656-2

  • Online ISBN: 978-3-642-79654-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics