Skip to main content

A Variational Formulation of The Boundary Element Method in Transient Poroelasticity

  • Conference paper
Computational Mechanics ’95

Abstract

Poroelasticity is concerned with heterogeneous media consisting of an elastic solid skeleton saturated by a diffusing pore fluid. Its range of application covers a variety of important real-life problems, such as design of nuclear reactor cores, exploitation of oil or gas deposits, simulation of living bone behaviour for orthopedical surgery, control of filtration leakage from reservoirs, and manufacturing process design for composite materials. Poroelasticity is now the subject of a fairly abundant literature, stemming from Terzaghi’s concept of effective stress and Biot’s linear consolidation theory. From a computational mechanics point of view, poroelastic analysis has been conducted using either the finite element method or the traditional (collocation) boundary element method [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. D. Cheng and M. Predeleanu, Transient boundary element formulation for linear poroelasticity. Appl. Math. Mod., vol. 11 (1987), pp. 285–290

    Article  MathSciNet  MATH  Google Scholar 

  2. D. E. Beskos, Dynamics of saturated rocks, I: Equations of motion. J. Engrg. Mech., vol. 115 (1989), pp. 982–995.

    Article  Google Scholar 

  3. Y. J. Chiou and S. Y. Chi, Boundary element analysis of Biot consolidation in layered elastic soils. Int. J. Num. Anal. Meth. Geomech., vol. 18 (1994), pp. 377–396.

    Article  MATH  Google Scholar 

  4. G. Maier and C. Polizzotto, A Galerkin approach to boundary elements elastoplastic analysis. Comp. Meth. Appl. Mech. Engng., vol. 60 (1987), pp. 175–194.

    Article  MATH  Google Scholar 

  5. C. Polizzotto, An energy approach to the boundary element method, part I: elastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69 (1988), pp. 167–184.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Polizzotto, An energy approach to the boundary element method, part II: elastic-plastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69 (1988), pp. 263–276.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Sirtori, G. Maier, G. Novati and S. Miccoli, A Galerkin symmetric boundaryv element method in elasticity: formulation and implementation. Int. J. Num. Meth. Engng., vol. 35 (1992), pp. 255–282.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Maier, G. Novati and Z. Cen, Symmetric Galerkin boundary element method for quasi-brittle fracture and frictional contact problems. Comp. Mech., vol. 13 (1993), pp. 74–89.

    MATH  Google Scholar 

  9. J. H. Kane and C. Balakrishna, Symmetric Galerkin boundary formulations employing curved elements. Int. J. Num. Meth. Eng., vol. 36 (1993), pp. 2157–2187.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Maier, M. Diligenti and A. Carini, A variational approach to boundary element elastodynamic analysis and extension to multidomain problems. Int. J. Comp. Meth. Appl. Mech. Engng., vol. 92 (1991), pp. 193–213.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Carini, M. Diligenti and G. Maier, Boundary integral equation analysis in linear viscoelasticity: variational and saddle-point formulations. Comp. Mech., vol. 8 (1991), pp. 87–98.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. P. Cleary, Fundamental solutions for a fluid-saturated porous solid. Int. J. Sol. Str., vol. 13 (1977), pp. 785–806.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Detournay and A. H. D. Cheng, Poroelastic solution of a plane strain point displacement discontinuity. J. Appl. Mech., vol. 54 (1987), pp. 783–787.

    Article  MATH  Google Scholar 

  14. E. Pan, Dislocation in an infinite poroelastic medium. Acta Mechanica, vol 87 (1991), pp. 105–115.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. R. Rice and M. P. Cleary, Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible consituents. Rev. Geophys. Space Phys., vol. 14 (1976), pp. 227–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, E., Maier, G., Amadei, B. (1995). A Variational Formulation of The Boundary Element Method in Transient Poroelasticity. In: Atluri, S.N., Yagawa, G., Cruse, T. (eds) Computational Mechanics ’95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79654-8_513

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79654-8_513

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79656-2

  • Online ISBN: 978-3-642-79654-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics