Computational Modelling of Fragmentation and Penetration of Ceramic Plates

  • G. T. Camacho
  • M. Ortiz
Conference paper

Abstract

The development of improved ballistic armor and projectiles is an intensive and ever-continuing activity. Numerical simulations constitute a potentially useful tool for the prediction of the performance of armor/projectile designs (see Anderson and Bodner [1] for an overview). A variety of ceramics are presently being evaluated as candidate armor materials, as they possess an attractive combination of high hardnesses and low densities. However, brittleness can result in catastrophic failure in the form of extensive cracking, fragmentation and comminution. These failure mechanisms have been documented experimentally (e. g., Shockey et al. [2], Woodward et al. [3]), and modelled variously (e. g., Walter [4], Rajendran [5]). Current approaches are largely based on continuum theories of elastic damage and strength which smear out the evolving microstructures. In addition, models of fragmentation have commonly been based on simple energy balance concepts (Grady and Kipp [6]).

Keywords

Brittle Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, C. and Bodner, J. “Ballistic Impact: The Status of Analytical and Numerical Modelling,” Int. J. Impact Eng, 7 (1988) 9–35.CrossRefGoogle Scholar
  2. 2.
    D. A. Shockey, A. H. Marchand, S. R. Skaggs, G. E. Cort, M. W. Burkett and R. Parker, “Failure Phenomenology of Confined Ceramic Targets and Impacting Rods,” Int. J. Impact Eng., 9 (1990) 263–275.CrossRefGoogle Scholar
  3. 3.
    Woodward, R. L., Gooch, W. A., O’Donnell, R. G., Perciballi, W. J., Baxter, B. J. and Pattie, S. D. “A Study of Fragmentation in the Ballistic Impact of Ceramics,” Int. J. Impact Eng., 15 (1994) 605–618.CrossRefGoogle Scholar
  4. 4.
    Walter, J. (ed.), Material Modeling for Terminal Ballistic Simulation, Technical Report BRL-TR-3392, U.S. Army Ballistic Research Laboratory, Maryland, 1992.Google Scholar
  5. 5.
    A. M. Rajendran, “Modeling the Impact Behavior of AD85 Ceramic under Multiaxial Loading,” Int. J. Impact Eng., 15 (1994)..Google Scholar
  6. 6.
    Grady, D. E. and Kipp, M. E., “Dynamic Fracture and Fragmentation,” in: J. R. Asay and M. Shahinpoor (eds.) High-Pressure Shock Compression of Solids, Springer-Verlag, New York, (1993) 265–322.CrossRefGoogle Scholar
  7. 7.
    Camacho, G. T. and Ortiz, M. “Computational Modelling of Impact Damage of Brittle Materials,” in preparation (1995).Google Scholar
  8. 8.
    Belytschko, T., “An Overview of Semidiscretization and Time Integration Procedures,” in: T. Belytschko and T. J. R. Hughes (eds.), Computational Methods for Transient Analysis, North-Holland (1983) 1–65.Google Scholar
  9. 9.
    Taylor, L. and Flanagan, D., “PRONTO 2D: A Two-Dimensional Transient Solid Dynamics Program,” Sandia National Laboratories, SAND86–0594, 1987.Google Scholar
  10. 10.
    Park, K. C. and Felippa, C. A., “Partitioned Analysis of Coupled Systems,” in: T. Belytschko and T. J. R. Hughes (eds.), Computational Methods for Transient Analysis, North-Holland (1983) 157–219.Google Scholar
  11. 11.
    Lemonds, J. and Needleman, A. “Finite Element Analysis of Shear Localization in Rate and Temperature Dependent Solids,” Mechanics of Materials, 5 (1986) 339–361.CrossRefGoogle Scholar
  12. 12.
    Cuitiño, A. M. and Ortiz, M., “A Material-Independent Method for Extending Stress Update Algorithms from Small-Strain Plasticity to Finite Plasticity with Multiplicative Kinematics,” Engineering Computations, 9 (1992) 437–451.CrossRefGoogle Scholar
  13. 13.
    Zhou, M., Clifton, R. J. and Needleman, A., “Shear Band Formation in a W-Ni-Fe Alloy under Plate Impact,” Tungsten & Tungsten Alloys- 1992, Metal Powder Industries Federation, Princeton, N.J.Google Scholar
  14. 14.
    Marusich, T. D. and Ortiz, M. “Modelling and Simulation of High-Speed Machining,” Internat. J. Num. Methods Engrg. Submitted for Publication (1994).Google Scholar
  15. 15.
    Curran, D. R., Seaman, L. and Shockey, D. A. “Dynamic Failure of Solids,” Physics Reports, 147 (1987) 253–388.CrossRefGoogle Scholar
  16. 16.
    Ortiz, M. and Suresh, S. “Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials,” J. of Appl. Meek, 60 (1993) 77–84.CrossRefGoogle Scholar
  17. 17.
    Ortiz, M. “Microcrack Coalescence and Macroscopic Crack Growth Initiation in Brittle Solids,” Int. J. Solids Structures, 5 (1988) 231–250.CrossRefGoogle Scholar
  18. 18.
    Ortiz, M. and Popov, E. P., “A Physical Model for the Inelasticity of Concrete,” Proc. R. Soc. Lond., A 383 (1982) 101–125.Google Scholar
  19. 19.
    Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O. C., “Adaptive Remeshing for Compressible Flow Computations,” J. Comp. Phys. 72 (1987) 449–466.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. T. Camacho
    • 1
  • M. Ortiz
    • 1
  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations