Skip to main content

Quantum Measurement and Fluctuations in Nanostructures

  • Conference paper
Nanostructures and Quantum Effects

Part of the book series: Springer Series in ((SSMATERIALS,volume 31))

Abstract

Measurement and fluctuations are closely related to each other in quantum mechanics. This fact is explicitly demonstrated in the case of a quantum non-demolition photodetector which is composed of a double quantum-wire electron interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. K. Likharev, IBM J. Res. Develop. 32, 144 (1988).

    Article  CAS  Google Scholar 

  2. A. Shimizu, Phys. Rev. A43, 3819 (1991); A. Shimizu (unpublished).

    Google Scholar 

  3. A. Shimizu, K. Fujii, M. Okuda and M. Yamanishi, Phys. Rev. B42, 9248 (1990).

    Google Scholar 

  4. For virtual excitation, see, e.g., B.S. Wherrett, A.C. Walker, and F.A.P. Tooley, SPIOptical Nonlinearities and Instabilities in Semiconductors, ed. by H. Haug, (Academic, 1988), Chap. 10, Sec.2.

    Google Scholar 

  5. W.G. Unruh, Phys. Rev. D18, 1764 (1978);

    Google Scholar 

  6. V.B. Braginsky et al, Science 209, 547 (1980);

    Article  CAS  Google Scholar 

  7. C.M. Caves et al., Rev. Mod. Phys. 52, 341 (1980);

    Article  Google Scholar 

  8. G.J. Milburn and D.F. Walls, Phys. Rev. A28, 2065 (1983);

    Google Scholar 

  9. N. Imoto, H.A. Haus, Y. Yamamoto, Phys. Rev. A32, 2287 (1985).

    Google Scholar 

  10. See, e.g., R.J. Glauber and M. Lewnstein, Phys. Rev. A43, 467 (1991), and references therein.

    Google Scholar 

  11. See, e.g., C.W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991). Note that this reference uses SI units, whereas the present paper is working in cgs Gauss units.

    Google Scholar 

  12. A. Shimizu and K. Fujita, Quantum Control and Measurement (H. Ezawa and Y. Murayama, eds., Elsevier, 1993), p.191.

    Google Scholar 

  13. More precisely, the relation between the old and new â’s are expressed as a unitary transformation, and the commutation relations are preserved.

    Google Scholar 

  14. D.F. Walls, nature 306, 141 (1983);

    Article  Google Scholar 

  15. R. Loudon, The quantum theory of light, 2nd ed. (Oxford Univ. Press, 1983);

    Google Scholar 

  16. M. Ueda and M. Kitagawa, Phys. Rev. Lett. 68, 3424 (1992).

    Article  Google Scholar 

  17. J. von Neumann, Die Mathematishe Grundlangen der Quantenmechanik, Springer-Verlag, Berlin, 1932.

    Google Scholar 

  18. B. Yurke, S.L. McCall and J.R. Klauder, Phys. Rev. A33 (1986) 4033;

    Google Scholar 

  19. M. Kitagawa and M. Ueda, Phys, Rev, Lett. 67 (1991) 1852.

    Article  Google Scholar 

  20. M.P Silverman: Nuovo Cimento 97, 200 (1987);

    Article  Google Scholar 

  21. M.P Silverman: Phys. Lett. A120, 442 (1987);

    Google Scholar 

  22. M.P Silverman: Physica B151, 291 (1988).

    Google Scholar 

  23. Y.P. Li, D.C. Tsui, J.J. Hermans, J.A. Simmons and G. Weimann, Appl. Phys. Lett. 57, 774 (1990).

    Article  CAS  Google Scholar 

  24. V. A. Khlus, Sov. Phys. JETP 66, 1243 (1987);

    Google Scholar 

  25. G. B. Lesovik, JETP Lett. 49, 592 (1989);

    Google Scholar 

  26. B. Yurke and G. P. Kochanski, Phys. Rev. B41, 8184 (1990).

    Google Scholar 

  27. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990);

    Google Scholar 

  28. M. Ueda and A. Shimizu, J. Phys. Soc. Jpn. 62, 2994 (1993).

    Article  CAS  Google Scholar 

  29. A. Shimizu and M. Ueda, Phys. Rev. Lett. 69, 1403 (1992);

    Article  Google Scholar 

  30. A. Shimizu, M. Ueda and H. Sakaki: Proc. 4th Int. Symp. Foundations of Quantum Mechanics (Tokyo, 1992), p. 189 (JJAP Series 9, 1993).

    Google Scholar 

  31. A. Shimizu and H. Sakaki, Phys. Rev. B44, 13136 (1991).

    Google Scholar 

  32. Reference [18] assumed that the coherence length in reservoirs, res c , is short, whereas Refs. [16] assumed that res c is long (which was implicitly assumed by assuming the perfect Fermi distribution in reservoirs.) The noise formula in the general case, which interpolates between the two limiting cases, was given in Eq. (21) of Ref. [17], which shows that finite res c induces an “emission noise” in addition to the “granularity noise” derived in [16]. However, conserning the fundamental limits of quantum interference devices, which were derived in [18], the limits depend only on the granularity noise, hence apply to any case irrespective of the length of res c . To break the limits, one must resort to well-designed many-body correlations among electrons, as discussed in [13].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimizu, A. (1994). Quantum Measurement and Fluctuations in Nanostructures. In: Nanostructures and Quantum Effects. Springer Series in Materials Science , vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79232-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79232-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79234-2

  • Online ISBN: 978-3-642-79232-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics