Advertisement

Spontaneous Spin Polarization Due to Electron—Electron Interaction in Quantum Wires

Conference paper
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 31)

Abstract

The electron energy bands in a semiconductor quantum wire in general are expected to show a wave vector dependent spin splitting with terms proportional to k3. We show that the wave vector dependence gives rise to a strong asymmetry of the electron-electron pair scattering with respect to the spin subbands. We show that one consequence of this asymmetry is a new physical effect: Spontaneous Spin Polarization. An electron spin polarization device based on this effect is proposed. The operating principle is explained and limits are discussed.

Keywords

Fermi Surface Spin Polarization Quantum Wire Spin Splitting Dependent Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sakaki, Jpn. J. Appl. Physics 19, L735 (1980),CrossRefGoogle Scholar
  2. 1a.
    H. Sakaki, Inst. of Physics Conf. Ser. 63, 251 (1981).Google Scholar
  3. 2.
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).CrossRefGoogle Scholar
  4. 3.
    F. D. M. Haldane. J. Phys. C: Solid State Phys., 14. 2585 (1981).CrossRefGoogle Scholar
  5. 4.
    C. W. Beenakker and H. van Honten, Solid State Physics, ed. by H. Ehrenreich and D. Turnbull, Academic Press (San Diego) 44, 1 (1991).Google Scholar
  6. 5.
    Ben Yu-Kuang Hu and S. Das Sarma, Appl. Phys. Lett. 61, 1208 (1992);CrossRefGoogle Scholar
  7. 5a.
    Ben Yu-Kuang Hu and S. Das Sarma, Phys. Rev. Lett. 68, 1750 (1992).CrossRefGoogle Scholar
  8. 6.
    J. Dempsey, B. Y. Gelfand, B. I. Halperin, Phys. Rev. Lett. 70, 3639 (1993).CrossRefGoogle Scholar
  9. 7.
    G. Fasol and H. Sakaki. Phys. Rev. Lett. 70, 3643 (1993).CrossRefGoogle Scholar
  10. 8.
    G. Fasol and H. Sakaki. Appl. Phys. Lett. 62. 2230 (1993).CrossRefGoogle Scholar
  11. 9.
    V. M. Edelstein, Solid State Commun. 73, 233 (1990).CrossRefGoogle Scholar
  12. 10.
    J. J. Quinn and R. A. Ferell. Phys. Rev. 112, 812 (1958).CrossRefGoogle Scholar
  13. 11.
    R. H. Ritchie, Phys. Rev. 114, 644 (1959).CrossRefGoogle Scholar
  14. 12.
    A. V. Chaplik, Zh. Eksp. Teor. Fiz. 60. 1845 (1971) [Sov. Phys. JEТР 33, 997 (1971)].Google Scholar
  15. 13.
    G. F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421 (1982).CrossRefGoogle Scholar
  16. 14.
    R. Jalabert and S. Das Sarma, Surface Science 229, 405 (1990)CrossRefGoogle Scholar
  17. 14a.
    R. Jalabert and S. Das Sarma, Phys. Rev. B 39, 5542 (1989),CrossRefGoogle Scholar
  18. 14b.
    R. Jalabert and S. Das Sarma, Phys. Rev. B 40, 9723 (1989).CrossRefGoogle Scholar
  19. 15.
    P. Hawrylak, G. Eliasson, and J. J. Quinn 37, 10187 (1988).Google Scholar
  20. 16.
    P. Hawrylak, Phys. Rev. Lett. 59, 485 (1987).CrossRefGoogle Scholar
  21. 17.
    G. Fasol and H. Sakaki. Solid State Commun. 84, 77 (1992).CrossRefGoogle Scholar
  22. 18.
    G. Fasol, Proc. 21st Int. Conf. on The Physics of Semiconductors, edited by Ping Jiang and Hou-Zhi Zheng, World Scientific, Singapore (1992) page 1411.Google Scholar
  23. 19.
    D. Pines and P. Nozières, The Theory of Quantum Liquids. Addison Wesley Publ. Co., Advanced book classics series. Redwood City, (1988).Google Scholar
  24. 20.
    G. Fasol, Appl. Phys. Lett. 61, 831 (1992).CrossRefGoogle Scholar
  25. 21.
    G. Fasol, Appl. Phys. Lett. 59, 2430 (1991).CrossRefGoogle Scholar
  26. 22.
    G. Dresselhaus: Phys. Rev. 186 (1958) 824.Google Scholar
  27. 23.
    E. O. Kane, in Semiconductors and Semimetals, eds. R. K. Willardson and A. C. Beer (Academic Press, New York, 1966), Vol. 1.Google Scholar
  28. 24.
    M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. Lett. 56, 2831 (1986),CrossRefGoogle Scholar
  29. 24a.
    M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. B 38. 1806 (1988).CrossRefGoogle Scholar
  30. 25.
    G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. Lett. 60, 728 (1988).CrossRefGoogle Scholar
  31. 26.
    G. Bastard, ‘Wave Mechanics Applied to Semiconductor Heterostructures’. Les Editions de Physiques, Les Ulis, (1990).Google Scholar
  32. 27.
    B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. Rev. Lett. 69, 848 (1992).CrossRefGoogle Scholar
  33. 28.
    B. Das, D. C. Miller, S. Datta, R. Reifenberger, W. P. Hong, P. K. Bhattacharya. J. Singh, and M. Jaffe, Phys. Rev. B 39 1411 (1989).CrossRefGoogle Scholar
  34. 29.
    P. D. Dresselhaus, C. M. A. Papavassiliou, R. G. Wheeler, and R. N. Sacks. Phys. Rev. Lett. 68, 106 (1992).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  1. 1.Institute of Industrial ScienceUniversity of TokyoMinato-ku, Tokyo 106Japan
  2. 2.‘Structure and Functional Property’-Group, ‘Sakigake 21’-PRESTOResearch Development Corporation of Japan (JRDC)Minato-ku, Tokyo 106Japan
  3. 3.Research Center for Advanced Science and TechnologyUniversity of TokyoMeguro-ku, Tokyo 153Japan

Personalised recommendations