Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 85))

Abstract

The mechanism by which asbestos and other mineral fibers cause cancer remains unknown despite intensive investigation. The most carcinogenic forms of asbestos contain iron and catalyze many of the same reactions that iron does. In fact, there is increasing evidence to suggest that iron is responsible for the biochemical reactivity of asbestos in vitro. Iron appears to be responsible for asbestos-dependent 02 consumption [Aust and Lund (1991); Lund and Aust (1991)], OH formation [Weitzman and Graceffa (1984); Gulumian and Van Wyk (1987); Zalma et al. (1987); Kennedy et al. (1989); Aust and Lund (1991)], lipid peroxidation [Weitzman and Weitberg (1985); Turver and Brown (1987); Goodlick et al. (1989)], induction of deoxyribonuclease-S1 sensitive sites [Turver and Brwon (1987)], and induction of DNA single-strand breaks [Lund and Aust (1992)]. Iron may also play a role in one mechanism of phagocytosis of asbestos fibers [Hobson et al. (1990)]. Desferrioxamine B, an iron-specific chelator, reduced the cytotoxicity of asbestos to a variety of different cultured cell types, suggesting that iron may be involved in the cytotoxicity of asbestos [Goodlick and Kane (1986); Shatos et al. (1987); Garcia et al. (1988); Kamp et al. (1990); Goodlick and Kane (1990)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aruoma OL, Halliwell B, Dizdaroglu M (1989) Iron ion-dependent modification of bases in DNA by superoxide. J Biol Chem 264: 13024–13028

    PubMed  CAS  Google Scholar 

  • Aust AE, Lund LG (1991) Iron-catalyzed oxygen consumption and hydroxyl radical generation in the presence of cysteine. Brown, RC et al. (eds.), Mechanisms in Fibre Carcinogenesis, NATO ASI Series, Plenum Press New York, 397–405

    Google Scholar 

  • Crichton RR (ed.) (1991) Inorganic Biochemistry of Iron Metabolism. Ellis Horwood Chichester

    Google Scholar 

  • Davis JMG (1964) The ultrastructure of asbestos bodies from human lung. Br J Exp Path 45: 642–646

    CAS  Google Scholar 

  • Ebina Y, Okada S, Hamazaki S, Toyokuni S, Midorikawa O (1989) Induction of mesothelioma by intraperitoneal injections of ferric saccharate in male Wistar rats. Br J Cancer 60: 708–711

    Article  Google Scholar 

  • Garcia JGN, Gray LD, Dodson RF, Callahan KS (1988) Asbestosinduced endothelial cell activation and injury. Demonstration of fiber phagocytosis and oxidant-dependent toxicity. Am Rev Respir Dis 138: 958–964

    Google Scholar 

  • Goodglick LA, Kane AB (1986) Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res 46: 5558–5566

    PubMed  CAS  Google Scholar 

  • Goodglick LA, Kane AB (1990) Cytotoxicity of long and short crocidolite asbestos fibers in vitro, and in vivo,. Cancer Res 50: 5153–5163

    PubMed  CAS  Google Scholar 

  • Goodglick LA, Pietras LA, Kane AG (1989) Evaluation of the casual relationship between crocidolite asbestos-induced lipid peroxidation and toxicity to macrophages. Am Rev Respir Dis 139: 1265–1273

    PubMed  CAS  Google Scholar 

  • Greenstock CL, Ruddock GW (1978) Radiation activation of carcinogens and the role of OH and 02. Photochem Photobiol 28: 877–880

    Article  PubMed  CAS  Google Scholar 

  • Grootveld M, Bell JD, Halliwell B, Aruoma 0I, Bomford A, Sadler PJ (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. J Biol Chem 264: 4417–4422

    PubMed  CAS  Google Scholar 

  • Gulumian M, Van Wyk JA (1987) Hydroxyl radical production in the presence of fibers by a Fenton-type reaction. Chem Biol Interact 62: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Kendig 0, Blakeslee J, Mizuhira V (1980) Effect of cellular ingestion on the elemental ratio of asbestos, in The In Vitro Effects of Mineral Dusts. Brown RC, Chamberlain M, Davies R, Gormley IP (eds) Academic Press London: 191–199

    Google Scholar 

  • Henner WD, Grunberg SM, Haseltine WA (1982) Sites and structure of radiation-induced DNA strand breaks. J Biol Chem 257: 11750–11754

    PubMed  CAS  Google Scholar 

  • Hobson J, Wright JL, Churg A (1990) Active oxygen species mediate asbestos fiber uptake by tracheal epithelial cells. FASEB J 4: 3135–3139

    PubMed  CAS  Google Scholar 

  • Holmes A, Morgan A (1967) Leaching and constituents of chrysotile asbestos in vivo,. Nature 215: 441–442

    Article  PubMed  CAS  Google Scholar 

  • KAmp DW, Dunne M, Anderson JA, Weitzman SA, Dunn MC (1990) Serum promotes asbestos-induced injury to human pulmonary epithelial cells. J Lab Clin Med 116: 289–297

    Google Scholar 

  • Kennedy TP, Dodson RF, Rao NV, Ky H, Hopkins C, Baser M, Tolley E, Hoidal JR (1989) Dusts causing pneumoconiosis generate OH and produce hemolysis by acting as Fenton catalysts. Arch Biochem Biophys 269: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Libbus BL, Illenye SA, Craighead JE (1989) Induction of DNA strand breaks in cultured rat embryo cells by crocidolite asbestos as assessed by nick translation. Cancer Res 49: 5713–5718

    PubMed  CAS  Google Scholar 

  • Lund LG, Aust AE (1990) Iron mobilization from asbestos by chelators and ascorbic acid. Arch Biochem Biophys 278: 60–64

    Article  CAS  Google Scholar 

  • Lund LG, Aust AE (1991) Mobilization of iron from crocidolite asbestos by certain chelators results in enhanced crocidolite-dependent oxygen consumption. Arch Biochem Biophys 287: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Lund LG, Aust AE (1992) Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in 0X174 RFI DNA. Carcinogenesis 13: 637–642

    Article  PubMed  CAS  Google Scholar 

  • Lund LG, Williams MG, Dodson RF, Aust AE (in press) Iron associated with asbestos bodies is responsible for the formation of single strand breaks in 0X174 RFI DNA. Occupat and Environ Med

    Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” reactions. Free Rad Biol Med 8: 95–108

    Article  PubMed  CAS  Google Scholar 

  • Morgan A, Lally AE, Holmes A (1973) Some observations on the distribution of trace metals in chrysotile asbestos. Ann Occup Hyg 16: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Niederau C, Fisher R, Sonnesberg A, Stremmel W, Trampish HJ, Strohmeyer G (1985) Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 313: 1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Nyberg K, Johansson U, Hohansson A, Camner P (1991) Phagolysosomal pH and location of particles in alveolar macrophages. Fund Applied Tox 16: 393–400

    Article  CAS  Google Scholar 

  • Oberdorster G, Boose CH, Pott F, Pfeiffer U (1980) In Vitro, dissolution rates of trace elements from miberal fibers, in The Vitro Effects of Mineral Dusts. Brown RC, Chamberlain M, Davies R, Gormley IP (eds.) Academic Press London: 183–189

    Google Scholar 

  • Pham QT, Gaertner M, Miur JM, Braun P., Gabiano M, Sadoul P (1983) Incidence of lung cancer among iron miners. Eur J Respir Dis 64: 534–539

    PubMed  CAS  Google Scholar 

  • Pinkerton KE, Pratt PC, Brody AR, Crapo JD (1984) Fiber localization and its relationship to lung reaction in rats after chronic inhalation of chrysotile asbestos. Am J. Pathol 117: 484–498

    Google Scholar 

  • Ponka P, Schulman HM, Woodworth RC (1990) Iron transport and storage. CRC Press Boca Raton

    Google Scholar 

  • Renier A, Levy F, Pilliere F, Jaurand MC (1990) Unscheduled DNA synthesis in rat pleural mesothelial cells treated with mineral fibres. Mutat Res 241: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Richmond HG (1959) Br Med J i: 947–949

    Google Scholar 

  • Shatos MA, Koherty JM, Marsh JP, Mossman BT (1987) Prevention of asbestos-induced cell death in rat lung fibroblasts and alveolar macrophages by scavengers of active oxygen species. Environ Res 44: 103–116

    Article  PubMed  CAS  Google Scholar 

  • Spurny KR (1983) Measurement and analysis of chemically changed

    Google Scholar 

  • mineral fibers after experiments in vitro, and in vivo,. Environ Health Perspect 51: 343–355

    Google Scholar 

  • Stevens RG, Kalkwarf DR (1990) Iron, radiation and cancer. Environ Health Prospect 87: 291–300

    Article  CAS  Google Scholar 

  • Turver CJ, Brown RC (1987) The role of catalytic iron in asbestos induced lipid peroxidation and DNA-strand breakage in C3H10T1/2 cells. Br J Cane 56: 133–136

    Article  CAS  Google Scholar 

  • Weitzman SA, Graceffa P (1984) Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys 228: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Weitzman S, Weitberg A (1985) Asbestos-catalyzed lipid peroxidation and its inhibition by desferrioxamine. Biochem J 225: 259–252

    PubMed  CAS  Google Scholar 

  • Zalma R, Bonneau L, Guignard J, Pezerat H, Jaurand MC (1987) Formation of oxy radicals by oxygen reduction arising from the surface activity of asbestos. Can J Chem 65: 2338–2341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aust, A.E. (1994). The Role of Iron in Asbestos-Induced Cancer. In: Davis, J.M.G., Jaurand, MC. (eds) Cellular and Molecular Effects of Mineral and Synthetic Dusts and Fibres. NATO ASI Series, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79041-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79041-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79043-0

  • Online ISBN: 978-3-642-79041-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics