Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 82))

  • 83 Accesses

Abstract

The questions. Classical studies by Palade, deDuve, and colleagues established that membranes divide cells into distinct compartments, each with a unique set of resident proteins catalyzing distinct functions. Each compartment is either a membrane, with its own set of embedded proteins, or a soluble space surrounded by a membrane. A typical eukaryotic cell may have over 20 compartments, while a bacterium such as E. coli has four the cytoplasm, inner [plasma] membrane, periplasm, and outer membrane. In contrast, almost all protein synthesis begins in the cytosol in all cells, in a basically spatially undifferentiated manner. The first question then is how proteins are targeted, either to remain in the cytosol or to the appropriate membrane for translocation. Having arrived there, the second question is one of translocation mechanism. Is it by radically changing its structure to pass from the aqueous cytosol to the hydrocarbon-like interior of a membrane, or by a proteinaceous transport system (“translocase”)? In either case, what is the energy source for this transfer? Is it the energy of protein synthesis pushing the chain out of the ribosome, a pulling force on the other side, electrophoresis, or is metabolic energy coupled to protein translocation by translocase? In Fig. 1, these questions are illustrated, with a fig leaf both conveying the attractive quality of the hidden solution and covering our ignorance about the ultimate answers.

Work in the authors’ laboratory is supported by the Insititute of General Medical Sciences, National Institutes of Health, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimaru, J., Matsuyama, S.-I., Tokuda, H., and Mizushima, S. (1991) Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 6545–6549.

    Article  PubMed  CAS  Google Scholar 

  • Bardwell, J.C.A., McGovern, K., and Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Bieker, K.L., Phillips, G.J., and Silhavy, T. (1990) The sec and prl genes of Escherichia coli. J. Bioenerget. Biomembr. 22: 291–310.

    Article  CAS  Google Scholar 

  • Brundage, L., Hendrick, J.P., Schiebel, E., Driessen, A.J.M., and Wickner, W. (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62: 649–657.

    Article  PubMed  CAS  Google Scholar 

  • Cabelli, R., Chen, L.L., Tai, P.C., and Oliver, D.B. (1988) Secretory protein translocation into E. coli SecA protein is required for membrane vesicles. Cell 55: 683–692.

    CAS  Google Scholar 

  • Chen, L. and Tai, P.C. (1985) ATP is essential for protein translocation into Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 82: 4384–4388.

    Article  PubMed  CAS  Google Scholar 

  • Crooke, E., Guthrie, B., Lecker, S., Lill, R., and Wickner, W. (1988) ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell 54: 1003–1011.

    PubMed  CAS  Google Scholar 

  • Cunningham, K., Lill, R., Crooke, E., Rice, M., Moore, K., Wickner, W. and Oliver, D. (1989) Isolation of SecA protein, a peripheral protein of the E. coli plasma membrane that is essential for the functional binding and translocation of proOmpA. EMBO J. 8: 955–959.

    CAS  Google Scholar 

  • Dalbey, R.E. and Wickner, W. (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J. Biol. Chem. 260: 15925–15931.

    PubMed  CAS  Google Scholar 

  • Driessen, A.J.M. and Wickner, W. (1990) Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 3107–3111.

    Article  PubMed  CAS  Google Scholar 

  • Geller, B.L., Movva, N.R., and Wickner, W. (1986) Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles. Proc. Natl. Acad. Sci. USA 83: 4219–4222.

    Article  PubMed  CAS  Google Scholar 

  • Gorlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., and Rapoport, T.A. (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71: 489–503.

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto, C.A., Chen, L., Fandl, J., and Tai, P.C. (1989) Purification of the Escherichia coli secB gene product and demonstration of its activity in an in vitro protein translocation system. J. Biol. Chem. 264: 2242–2249.

    PubMed  CAS  Google Scholar 

  • Lill, R., Cunningham, K., Brundage, L, Ito, K., Oliver, D., and Wickner, W. (1989) The SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of E. coli. EMBO J. 8: 961–966.

    CAS  Google Scholar 

  • Matsuyama, S.-I., Fujita, Y., and Mizushima, S. (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. EMBO J. 12: 265–270.

    PubMed  CAS  Google Scholar 

  • Muller, M. and Blobel, G. (1984) In vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 7421–7425.

    Article  PubMed  CAS  Google Scholar 

  • Randall, L.L. (1983) Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation. Cell 33: 231–240.

    Article  PubMed  CAS  Google Scholar 

  • Randall, L.L. and Hardy, S.J.S. (1986) Correlation of competence for export with lack of tertiary structure of the mature species: a study in vivo of maltose-binding protein in E. coli. Cell 46: 921–928.

    CAS  Google Scholar 

  • Schatz, P.J. and Beckwith, J. (1990) Ann. Rev. Genet. 24: 215–248.

    Article  PubMed  CAS  Google Scholar 

  • Schiebel, E., Driessen, A.J.M., Hartl, F.-U., and Wickner, W. (1991) AjH and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64: 927–939.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, W. (1988) Mechanisms of membrane assembly: General lessons from the study of M13 coat protein and Escherichia coli leader peptidase. Biochemistry 27: 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, W., Driessen, A.J.M., and Hartl, F.-U. (1991) The enzymology of protein translocation across the Escherichia coli plasma membrane. Ann. Rev. Biochem. 60: 101–124.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J.B., Ray, P.H., and Bassford, P.J. Jr. (1988) Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc. Natl. Acad. Sci. USA 85: 8978–8982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wickner, B., Leonard, M.R. (1994). How do Proteins Cross a Membrane?. In: Op den Kamp, J.A.F. (eds) Biological Membranes: Structure, Biogenesis and Dynamics. NATO ASI Series, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78846-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78846-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78848-2

  • Online ISBN: 978-3-642-78846-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics