Skip to main content

Topology and Regulation of Ganglioside Metabolism — Function and Pathobiochemistry of Sphingolipid Activator Proteins

  • Conference paper
Glyco-and Cellbiology

Abstract

Glycosphingolipids (GSL) are amphiphilic plasma membrane components characteristic of vertebrate tissues (Svennerholm 1984; Ledeen and Yu 1982; van Echten and Sandhoff 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barranger YA, Ginns EJ (1989) Glucosylceramide lipidosis: Gaucher Disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic bases of inherited disease. 6th ed. vol. II, Mc Graw-Hill, New York, pp 1677–1698

    Google Scholar 

  • Berent SL, Radin NS (1981) Mechanism of activation of glucocerebrosidase by co-β-glucosi- dase (glucosidase activator protein). Biochim Biophys Acta 664: 572–582

    PubMed  CAS  Google Scholar 

  • O’Brien JS, Kretz KA, Dewji N, Wenger DA, Esch F, Fluharty AL (1988) Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241:1098–1101

    Article  PubMed  Google Scholar 

  • O’Brien JS (1989) β-Galactosidase deficiency (GM1, gangliosidosis, galactosialidosis, and Morquio Syndrome Type B); ganglioside sialidase deficiency (Mucolipidosis (IV). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic bases of inherited disease 6th ed., vol. II., Mc Graw-Hill, New York, pp 1797–1806

    Google Scholar 

  • Coste H, Martel M-B, Got R (1986) Topology of glusosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta 858:6–12

    Article  PubMed  CAS  Google Scholar 

  • Deutscher SL, Hirschberg CB (1986) Mechanism of galactosylation in the Golgi apparatus. J Biol Chem 261:96–100

    PubMed  CAS  Google Scholar 

  • Fishman PH, Brady RO (1976) Biosynthesis and function of gangliosides. Science 194:906–915

    Article  PubMed  CAS  Google Scholar 

  • Fürst W, Sandhoff K (1992) Activator proteins and topology of lysosomal sphingolipid catabo- lism. Biochim Biophys Acta 1126:1–16

    PubMed  Google Scholar 

  • Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52:329–341

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Suzuki A, Yamakawa T, Miyashita N, Moriwaki K (1983) Expression of GM1 and GDI a in mouse liver is linked to the H2 complex on chromosome 17. J Biochem 94:2043–2048

    PubMed  CAS  Google Scholar 

  • Ho MW, Light ND (1973) Glucocerebrosidase: reconstitution from macromolecular components depends on acidic phospholipids. Biochem J 136:821–823

    PubMed  CAS  Google Scholar 

  • Ho MW (1975) Specificity of low molecular weight glycoprotein effector of lipid glycosidase. FEBS Lett 53:243–247

    Article  PubMed  CAS  Google Scholar 

  • Ho MW, Rigby M (1975) Glucocerebrosidase. Stoichiometry of association between effector and catalytic proteins. Biochim Biophys Acta 397:267–273

    PubMed  CAS  Google Scholar 

  • Holtschmidt H, Sandhoff K, Kwon HY, Harzer K, Nakano T, Suzuki K (1991) Sulfatide activator protein: alternative splicing generates three mRNAs and a newly found mutation responsible for a clinical disease. J Biol Chem 266:7556–7560

    PubMed  CAS  Google Scholar 

  • Hopkins CR, Gibson A, Shipman M, Miller K (1990) Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346:335–339

    Article  PubMed  CAS  Google Scholar 

  • Harzer K, Paton BC, Poulos A, Kustermann-Kuhn B, Roggendorf W, Grisar T, Popp M (1989) Sphingolipid activator protein (SAP) deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr 149:31–39

    Article  PubMed  CAS  Google Scholar 

  • Iber H, Kaufmann R, Pohlentz G, Schwarzmann G, Sandhoff K (1989) Identity of GA1-, GM la- and GDlb synthase in Golgi vesicles from rat liver. FEBS Lett 248:18–22

    Article  PubMed  CAS  Google Scholar 

  • Iber H, Sandhoff K (1989) Identity of GDlc, GTla and GQlb synthase in Golgi vesicles from rat liver. FEBS Lett 254:124–128

    Article  PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Klein RA, Sandhoff K (1990) pH-Dependent changes of ganglioside biosynthesis in neuronal cell culture. Eur J Cell Biol 52:236–240

    PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Sandhoff K (1991) Substrate specificity of α 2 → 3 sialytransferases in ganglioside biosynthesis of rat liver Golgi. Eur J Biochem 195:115–120

    Article  PubMed  CAS  Google Scholar 

  • Iber H, Zacharias C, Sandhoff K (1992a) The c-series gangliosides GT3, GT2 and GPlc are formed in rat liver Golgi by the same set of glycosyltransferases that catalyze the biosynthesis of asialo, a-, and b-series gangliosides. Glycobiology 2:137–142

    Article  PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Sandhoff K (1992b) Fractionation of primary cultured neurons: distribution of sialyltransferases involved in ganglioside biosynthesis. J Neurochem 58:1533–1537

    Article  PubMed  CAS  Google Scholar 

  • Kok JW, Babia T, Hoekstra D (1991) Sorting of sphingolipids in the endocytic pathway of HT 29 cells. J Cell Biol 114:231–239

    Article  PubMed  CAS  Google Scholar 

  • Koval M, Pagano RE (1989) Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogs in cultured fibroblasts. J Cell Biol 108:2169–2181

    Article  PubMed  CAS  Google Scholar 

  • Koval M, Pagano RE (1990) Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts. J Cell Biol 111:429–442

    Article  PubMed  CAS  Google Scholar 

  • Kretz KA, Carson GS, Morimoto S, Kishimoto Y, Fluharty AL, O’Brien JS (1990) Characterization of a mutation in a family with saposin B deficiency: a glucosylation site defect. Proc Natl Acad Sci USA 87:2541–2544

    Article  PubMed  CAS  Google Scholar 

  • Ledeen RW, Yu RK (1982) New strategies for detection and resolution of minor gangliosides as applied to brain fucogangliosides. Methods Enzymol 83:139–189

    Article  PubMed  CAS  Google Scholar 

  • Li S-C, Sonnino S, Tettamanti G, Li Y-T (1988) Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J Biol Chem 263:6588–6591

    PubMed  CAS  Google Scholar 

  • Mandon EC, van Echten G, Birk R, Schmidt RR, Sandhoff K (1991) Sphingolipid biosynthesis in cultured neurons. Downregulation of serine palmitoyltransferase by sphingoid bases. Eur J Biochem 198:667–674

    Article  PubMed  CAS  Google Scholar 

  • Mandon E, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267:11144–11148

    PubMed  CAS  Google Scholar 

  • McKanna JA, Haigier HT, Cohen S (1979) Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci USA 76:5689–5693

    Article  PubMed  CAS  Google Scholar 

  • Mehl E, Jatzkewitz H (1964) Eine Cerebrosidsulfatase aus Schweineniere. Hoppe-Seyler’s Z Physiol Chem 339:260–276

    Article  PubMed  CAS  Google Scholar 

  • Meier EM, Schwarzmann G, Fürst W, Sandhoff K (1991) The human GM2 activator protein: a substrate-specific cofactor of hexosaminidase A. J Biol Chem 266:1879–1887

    PubMed  CAS  Google Scholar 

  • Merrill AH, Wang E (1986) Biosynthesis of long-chain (sphingoid) bases from serine by LM cells. J Biol Chem 261:3764–3769

    PubMed  CAS  Google Scholar 

  • Morré DJ, Kartenbeck J, Franke WW (1979) Membrane flow and interconversions among en- domembranes. Biochim Biophys Acta 559:71–152

    PubMed  Google Scholar 

  • Moser W, Moser AB, Chen WW, Schram AW (1989) Ceramidase deficiency: Farber lipogra- nulomatosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic bases of inherited disease, 6th ed., vol. II. Mc Graw-Hill, New York, pp 1645–1654

    Google Scholar 

  • Nagai Y, Nakaishi H, Sanai Y (1986) Gene transfer as a novel approach to the gene-controlled mechanism of the cellular expression of glycosphingolipids. Chem Phys Lipids 42:91–103

    Article  PubMed  CAS  Google Scholar 

  • Nakakuma H, Sanai Y, Shiroki K, Nagai Y (1984) Gene-regulated expression of glycolipids: appearance of GD3 ganglioside in rat cells on transfection with transforming gene E 1 of human adenovirus type 12 DNA and its transcriptional subunits. J Biochem 96:1471–1480

    CAS  Google Scholar 

  • Nakano T, Sandhoff K, Stümper J, Chrisomanou H, Suzuki K (1989) Structure of full-length cDNA coding for sulfatide activator, a co-β-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem (Tokyo) 105:152–154

    CAS  Google Scholar 

  • Ong DE, Brady RN (1973) In vivo studies on the introduction of the 4-t-double bond of the sphingenene moiety of rat brain ceramides. J Biol Chem 248:3884–3888

    PubMed  CAS  Google Scholar 

  • Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988) Both GA2-, GM2, and GD2 synthases and GM lb, GDI a and GTlb synthases are single enzymes in Golgi vesicles from rat liver. Proc Natl Sci USA 85:7044–7048

    Article  CAS  Google Scholar 

  • Rafi MA, Zhang X-L, De Gala G, Wenger DA (1990) Detection of a point mutation in sphingolipid activator protein-1 mRNA in patients with a variant form of metachromatic leukodystrophy. Biochem Biophys Res Commun 166:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Renfrew CA, Hubbard AL (1991) Degradation of epidermal growth factor receptor in rat liver. Membrane topology through the lysosomal pathway. J Biol Chem 266:21265–21273

    PubMed  CAS  Google Scholar 

  • Rother J, van Echten G, Schwarzmann G, Sandhoff K (1992) Biosynthesis of sphingolipids: di- hydroceramide and not sphinganine is desaturated by cultured cells. Biochem Biophys Res Commun 189:14–20

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, Christomanou H (1979) Biochemistry and genetics of gangliosidoses. Hum Genet 50:107–143

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, Conzelmann E, Neufeld ET, Kaback MM, Suzuki K (1989) The GM2-gangliosi- dosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic bases of inherited disease, 6th ed., vol. II. Mc Graw-Hill, New York, pp 1807–1839

    Google Scholar 

  • Sandhoff K, van Echten G, Schröder M, Schnabel D, Suzuki K (1992) Metabolism of glycolipids. The role of glycolipid-binding proteins in the function and pathobiochemistry of lyso- somes. Biochem Soc Trans 20:695–699

    PubMed  CAS  Google Scholar 

  • Schnabel D, Schröder M, Sandhoff K (1991) Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett 284:57–59

    Article  PubMed  CAS  Google Scholar 

  • Schnabel D, Schröder M, Fürst W, Klein A, Hurwitz R, Zenk T, Weber G, Harzer K, Paton B, Poulos A, Suzuki K, Sandhoff K (1992) Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem 267:3312–3315

    PubMed  CAS  Google Scholar 

  • Schwarzmann G, Sandhoff K (1990) Metabolism and intracellular transport of glycosphingoli- pids. Perspectives in biochemistry, Biochemistry 29:10865–10871

    Article  PubMed  CAS  Google Scholar 

  • Stoffel W, Le Kim D, Sticht G (1968) Metabolism of sphingosine bases: biosynthesis of dihy- drosphingosine in vitro. Hoppe-Seyler’s Z Physiol Chem 349:664–670

    Article  PubMed  CAS  Google Scholar 

  • Stoffel W, Bister K (1974) Desaturation of sphinganine. Ceramide and sphingomyelin metabolism in the rat and in BHK 21 cells in tissue culture. Hoppe-Seyler’s Z Physiol Chem 355:911–923

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L (1984) Biological significance of gangliosides. In: Dreyfus H, Massarelli R, Freysz L, Rebel G (eds) Cellular and pathological aspects of glycoconjugate metabolism, vol 126. INSERM, France, pp 21–44

    Google Scholar 

  • Thompson LK, Horowitz PM, Bently KL, Thomas DD, Alderete JF, Klebe RJ (1986) Localization of the ganglioside-binding site of fibronectin. J Biol Chem 261:5209–5214

    PubMed  CAS  Google Scholar 

  • Tiemeyer M, Yasuda Y, Schnaar RL (1989) Ganglioside-specific binding protein on rat brain membranes. J Biol Chem 264:1671–1681

    PubMed  CAS  Google Scholar 

  • Trinchera M, Fabbri M, Ghidoni R (1991) Topography of gly cosy transferases involved in the initial glycosylations of gangliosides. J Biol Chem 266:20907–20912

    PubMed  CAS  Google Scholar 

  • van Echten G, Sandhoff K (1989) Modulation of ganglioside biosynthesis in primary cultured neurons. J Neurochem 52:207–214

    Article  PubMed  Google Scholar 

  • van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K (1990a) Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur J Cell Biol 51:135–139

    PubMed  Google Scholar 

  • van Echten G, Birk R, Brenner-Weiss G, Schmidt RR, Sandhoff K (1990b) Modulation of sphingolipid biosynthesis in primary cultured neurons by long-chain bases. J Biol Chem 265:9333–9339

    PubMed  Google Scholar 

  • Vogel A, Schwarzmann G, Sandhoff K (1991) Glycosphingolipid specificity of the human sul- fatide activator protein. Eur J Biochem 200:591–597

    Article  PubMed  CAS  Google Scholar 

  • Wessling-Resnick M, Braell WA (1990) The sorting and segregation mechanism of the en- docytic pathway is functional in a cell-free system. J Biol Chem 265:690–699

    PubMed  CAS  Google Scholar 

  • Yusuf HKM, Schwarzmann G, Pohlentz G, Sandhoff K (1987) Oligosialogangliosides inhibit GM2- and GD3-synthesis in isolated Golgi vesicles from rat liver. Hoppe Seyler’s Z Physiol Chem 368:455–462

    Article  CAS  Google Scholar 

  • Zhang X-L, Rafi MA, De Gala G, Wenger DA (1990) Insertion in the mRNA of a metachromatic leukodystrophy patient with sphingolipid activator protein-1 deficiency. Proc Natl Acad Sci USA 87:1426–1430

    Article  PubMed  CAS  Google Scholar 

  • Zhang X-L, Rafi MA, De Gala G, Wenger DA (1991) The mechanism for a 33-nucleotide insertion in messenger RNA causing sphingolipid activator protein (SAP-1) — deficient metachromatic leukodystrophy. Hum Genet 87:211–215

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandhoff, K., van Echten, G. (1994). Topology and Regulation of Ganglioside Metabolism — Function and Pathobiochemistry of Sphingolipid Activator Proteins. In: Wieland, F., Reutter, W. (eds) Glyco-and Cellbiology. Colloquium der Gesellschaft für Biologische Chemie 22.–24. April 1993 in Mosbach/Baden, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78729-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78729-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78731-7

  • Online ISBN: 978-3-642-78729-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics