Lipid Transport from the Golgi Complex to the Plasma Membrane of Epithelial Cells

  • G. van Meer
  • M. Thielemans
  • I. L. van Genderen
  • A. L. B. van Helvoort
  • P. van der Bijl
  • K. N. J. Burger
Conference paper
Part of the Colloquium der Gesellschaft für Biologische Chemie 22.–24. April 1993 in Mosbach/Baden book series (MOSBACH, volume 44)


Eukaryotic cells are enveloped by a plasma membrane. The cytoplasm is filled with numerous intracellular membranes that sometimes enclose also other membraneous systems. It is well recognized that the various organelles exert different functions and possess unique protein and lipid compositions. The intracellular lipid heterogeneity is very stable and strikingly similar among the different cell types. A fundamental question is how it is generated by the dynamic interplay between local synthesis, modification, and degradation on the one hand, and the various modes of lipid traffic on the other.


MDCK Cell Golgi Complex Sphingolipid Synthesis Cell BioI Vesicular Traffic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown DA (1992) Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol 2:338–343PubMedCrossRefGoogle Scholar
  2. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544PubMedCrossRefGoogle Scholar
  3. Brüning A, Karrenbauer A, Schnabel E, Wieland FT (1992) Brefeldin A-induced increase of sphingomyelin synthesis. J Biol Chem 267:5052–5055PubMedGoogle Scholar
  4. Collins RN, Warren G (1992) Sphingolipid transport in mitotic HeLa cells. J Biol Chem 267:24906–24911PubMedGoogle Scholar
  5. Coste H, Martel MB, Got R (1986) Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta 858:6–12PubMedCrossRefGoogle Scholar
  6. Devaux PF (1992) Protein involvement in transmembrane lipid asymmetry. Annu Rev Biophys Biomol Struct 31:417–439CrossRefGoogle Scholar
  7. Futerman AH, Pagano RE (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280:295–302PubMedGoogle Scholar
  8. Futerman AH, Stieger B, Hubbard AL, Pagano RE (1990) Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 265:8650–8657PubMedGoogle Scholar
  9. Hannan LA, Lisanti MP, Rodriguez-Boulan E, Edidin M (1993) Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J Cell Biol 120:353–358PubMedCrossRefGoogle Scholar
  10. Hatch GM, Vance DE (1992) Stimulation of sphingomyelin biosynthesis by brefeldin A and sphingomyelin breakdown by okadaic acid treatment of rat hepatocytes. J Biol Chem 267:12443–12451PubMedGoogle Scholar
  11. Helms JB, Karrenbauer A, Wirtz KWA, Rothman JE, Wieland FT (1990) Reconstitution of steps in the constitutive secretory pathway in permeabilized cells. Secretion of glycosylated tripeptide and truncated sphingomyelin. J Biol Chem 265:20027–20032PubMedGoogle Scholar
  12. Holmes EH (1989) Characterization and membrane organization of β → 3- and β → 4- galactosyltransferases from human colonic adenocarcinoma cell lines Colo 205 and SW403: basis for preferential synthesis of type 1 chain lacto-series carbohydrate structures. Arch Biochem Biophys 270:630–646PubMedCrossRefGoogle Scholar
  13. Iber H, van Echten G, Sandhoff K (1992) Fractionation of primary cultured cerebellar neurons: distribution of sialyltransferases involved in ganglioside biosynthesis. J Neurochem 58:1533–1537PubMedCrossRefGoogle Scholar
  14. Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F (1990) Sphingomyelin is synthesized in the cis-Golgi. FEBS Lett 261:155–157PubMedCrossRefGoogle Scholar
  15. Jeckel D, Karrenbauer A, Burger KNJ, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267PubMedCrossRefGoogle Scholar
  16. Kallen K-J, Quinn P, Allan D (1993) Effects of brefeldin A on sphingomyelin transport and lipid synthesis in BHK21 cells. Biochem J 289:307–312PubMedGoogle Scholar
  17. Karrenbauer A, Jeckel D, Just W, Birk R, Schmidt RR, Rothman JE, Wieland FT (1990) The rate of bulk flow from the Golgi to the plasma membrane. Cell 63:259–267PubMedCrossRefGoogle Scholar
  18. Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080PubMedCrossRefGoogle Scholar
  19. Kobayashi T, Pagano RE (1989) Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J Biol Chem 264:5966–5973PubMedGoogle Scholar
  20. Kok JW, Babia T, Hoekstra D (1991) Sorting of sphingolipids in the endocytic pathway of HT29 cells. J Cell Biol 114:231–239PubMedCrossRefGoogle Scholar
  21. Lipsky NG, Pagano RE (1985) Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol 100:27–34PubMedCrossRefGoogle Scholar
  22. Lisanti MP, Rodriguez-Boulan E (1990) Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelical cells. TIBS 15:113–118PubMedGoogle Scholar
  23. Miller-Podraza H, Fishman PH (1982) Translocation of newly synthesized gangliosides to the cell surface. Biochemistry 21:3265–3270PubMedCrossRefGoogle Scholar
  24. Miller-Podraza H, Fishman PH (1984) Effect of drugs and temperature on biosynthesis and transport of glycosphingolipids in cultured neurotumor cells. Biochim Biophys Acta 804:44–51CrossRefGoogle Scholar
  25. Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451PubMedCrossRefGoogle Scholar
  26. Sherwood AL, Holmes EH (1992) Brefeldin A induced inhibition of de novo globo- and neo- lactoseries glycolipid core chain biosynthesis in human cells. J Biol Chem 267:25328–25336PubMedGoogle Scholar
  27. Shur B (1989) Expression and function of cell surface galactosytransferase. Biochim Biophys Acta 988:389–409PubMedGoogle Scholar
  28. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202PubMedCrossRefGoogle Scholar
  29. Strous GJ, van Kerkhof P, van Meer G, Rijnboutt S, Stoorvogel W (1993) Differential effects of brefeldin A on transport of secretory and lysosomal proteins. J Biol Chem 268:2341–2347PubMedGoogle Scholar
  30. Thyberg J, Moskalewski S (1992) Reorganization of the Golgi complex in association with mitosis: redistribution of mannosidase II to the endoplasmic reticulum and effects of brefeldin A. J Submicrosc Cytol Pathol 24:495–508PubMedGoogle Scholar
  31. Trinchera M, Fabbri M, Ghidoni R (1991) Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J Biol Chem 266:20907–20912PubMedGoogle Scholar
  32. Trinchera M, Ghidoni R (1989) Two glycosphingolipids sialyltransferases are localized in different sub-Golgi compartments in rat liver. J Biol Chem 264:15766–15769PubMedGoogle Scholar
  33. Trinchera M, Pirovano B, Ghidoni R (1990) Sub-Golgi distribution in rat liver of CMP-NeuAc GM3- and CMP-NeuAc:GT1bα2→8 sialyltransferases and comparison with the distribution of the other glycosyltransferase activity involved in ganglioside biosynthesis. J Biol Chem 265:18242–18247PubMedGoogle Scholar
  34. van’t Hof W, Silvius J, Wieland F, van Meer G (1992) Epithelial sphingolipid sorting allows for extensive variation of the fatty acyl chain and the sphingosine backbone. Biochem J 283:913–917Google Scholar
  35. van’t Hof W, van Meer G (1990) Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. J Cell Biol 111:977–986CrossRefGoogle Scholar
  36. van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K (1990) Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur J Cell Biol 51:135–139PubMedGoogle Scholar
  37. van Genderen IL, van Meer G, Slot JW, Geuze HJ, Voorhout WF (1991) Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol 115:1009–1019PubMedCrossRefGoogle Scholar
  38. van Helvoort ALB, van’t Hof W, Ritsema T, Sandra A, van Meer G (1994) Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (MDCK) cells. Evidence for the reserve action of the sphingomyelin synthase. J Biol Chem (in press)Google Scholar
  39. van Meer G (1989) Lipid traffic in animal cells. Annu Rev Cell Biol 5:247–275PubMedCrossRefGoogle Scholar
  40. van Meer G, Burger KNJ (1992) (Glyco)sphingolipid traffic sorted out? Trends Cell Biol 2:332–337PubMedCrossRefGoogle Scholar
  41. van Meer G, Simons K (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 5:1455–1464PubMedGoogle Scholar
  42. van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36:51–58PubMedCrossRefGoogle Scholar
  43. van Meer G, Stelzer EHK, Wijnaendts-van-Resandt RW, Simons K (1987) Sorting of sphingo- lipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 105:1623–1635PubMedCrossRefGoogle Scholar
  44. van Meer G, van’t Hof W (1993) Epithelial sphingolipid sorting is insensitive to reorganization of the Golgi by nocodazole, but is abolished by monensin in MDCK cells and by brefeldin A in Caco-2 cells. J Cell Sci 104:833–842PubMedGoogle Scholar
  45. Young WW Jr, Lutz MS, Blackburn WA (1992) Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J Biol Chem 267:12011–12015PubMedGoogle Scholar
  46. Young WW Jr, Lutz MS, Mills SE, Lechler-Osborn S (1990) Use of brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block. Proc Natl Acad Sci USA 87:6838–6842PubMedCrossRefGoogle Scholar
  47. Zurzolo C, van’t Hof W, Lisanti M, Caras I, Nitsch L, van Meer G, Rodriguez Boulan E (1993) Basolateral targeting of GPI-anchored proteins and glycosphingolipids in a polarized thyroid epithelial cell line. J Cell Biochem 178:278Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • G. van Meer
    • 1
  • M. Thielemans
    • 1
  • I. L. van Genderen
    • 1
  • A. L. B. van Helvoort
    • 1
  • P. van der Bijl
    • 1
  • K. N. J. Burger
    • 1
  1. 1.Department of Cell BiologyMedical School AZU H02.314UtrechtThe Netherlands

Personalised recommendations