Skip to main content

Lipid Transport from the Golgi Complex to the Plasma Membrane of Epithelial Cells

  • Conference paper
Glyco-and Cellbiology

Abstract

Eukaryotic cells are enveloped by a plasma membrane. The cytoplasm is filled with numerous intracellular membranes that sometimes enclose also other membraneous systems. It is well recognized that the various organelles exert different functions and possess unique protein and lipid compositions. The intracellular lipid heterogeneity is very stable and strikingly similar among the different cell types. A fundamental question is how it is generated by the dynamic interplay between local synthesis, modification, and degradation on the one hand, and the various modes of lipid traffic on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown DA (1992) Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol 2:338–343

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  • Brüning A, Karrenbauer A, Schnabel E, Wieland FT (1992) Brefeldin A-induced increase of sphingomyelin synthesis. J Biol Chem 267:5052–5055

    PubMed  Google Scholar 

  • Collins RN, Warren G (1992) Sphingolipid transport in mitotic HeLa cells. J Biol Chem 267:24906–24911

    PubMed  CAS  Google Scholar 

  • Coste H, Martel MB, Got R (1986) Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta 858:6–12

    Article  PubMed  CAS  Google Scholar 

  • Devaux PF (1992) Protein involvement in transmembrane lipid asymmetry. Annu Rev Biophys Biomol Struct 31:417–439

    Article  Google Scholar 

  • Futerman AH, Pagano RE (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280:295–302

    PubMed  CAS  Google Scholar 

  • Futerman AH, Stieger B, Hubbard AL, Pagano RE (1990) Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 265:8650–8657

    PubMed  CAS  Google Scholar 

  • Hannan LA, Lisanti MP, Rodriguez-Boulan E, Edidin M (1993) Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J Cell Biol 120:353–358

    Article  PubMed  CAS  Google Scholar 

  • Hatch GM, Vance DE (1992) Stimulation of sphingomyelin biosynthesis by brefeldin A and sphingomyelin breakdown by okadaic acid treatment of rat hepatocytes. J Biol Chem 267:12443–12451

    PubMed  CAS  Google Scholar 

  • Helms JB, Karrenbauer A, Wirtz KWA, Rothman JE, Wieland FT (1990) Reconstitution of steps in the constitutive secretory pathway in permeabilized cells. Secretion of glycosylated tripeptide and truncated sphingomyelin. J Biol Chem 265:20027–20032

    PubMed  CAS  Google Scholar 

  • Holmes EH (1989) Characterization and membrane organization of β → 3- and β → 4- galactosyltransferases from human colonic adenocarcinoma cell lines Colo 205 and SW403: basis for preferential synthesis of type 1 chain lacto-series carbohydrate structures. Arch Biochem Biophys 270:630–646

    Article  PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Sandhoff K (1992) Fractionation of primary cultured cerebellar neurons: distribution of sialyltransferases involved in ganglioside biosynthesis. J Neurochem 58:1533–1537

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F (1990) Sphingomyelin is synthesized in the cis-Golgi. FEBS Lett 261:155–157

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KNJ, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267

    Article  PubMed  CAS  Google Scholar 

  • Kallen K-J, Quinn P, Allan D (1993) Effects of brefeldin A on sphingomyelin transport and lipid synthesis in BHK21 cells. Biochem J 289:307–312

    PubMed  CAS  Google Scholar 

  • Karrenbauer A, Jeckel D, Just W, Birk R, Schmidt RR, Rothman JE, Wieland FT (1990) The rate of bulk flow from the Golgi to the plasma membrane. Cell 63:259–267

    Article  PubMed  CAS  Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Pagano RE (1989) Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J Biol Chem 264:5966–5973

    PubMed  CAS  Google Scholar 

  • Kok JW, Babia T, Hoekstra D (1991) Sorting of sphingolipids in the endocytic pathway of HT29 cells. J Cell Biol 114:231–239

    Article  PubMed  CAS  Google Scholar 

  • Lipsky NG, Pagano RE (1985) Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol 100:27–34

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Rodriguez-Boulan E (1990) Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelical cells. TIBS 15:113–118

    PubMed  CAS  Google Scholar 

  • Miller-Podraza H, Fishman PH (1982) Translocation of newly synthesized gangliosides to the cell surface. Biochemistry 21:3265–3270

    Article  PubMed  CAS  Google Scholar 

  • Miller-Podraza H, Fishman PH (1984) Effect of drugs and temperature on biosynthesis and transport of glycosphingolipids in cultured neurotumor cells. Biochim Biophys Acta 804:44–51

    Article  Google Scholar 

  • Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451

    Article  PubMed  CAS  Google Scholar 

  • Sherwood AL, Holmes EH (1992) Brefeldin A induced inhibition of de novo globo- and neo- lactoseries glycolipid core chain biosynthesis in human cells. J Biol Chem 267:25328–25336

    PubMed  CAS  Google Scholar 

  • Shur B (1989) Expression and function of cell surface galactosytransferase. Biochim Biophys Acta 988:389–409

    PubMed  CAS  Google Scholar 

  • Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  PubMed  CAS  Google Scholar 

  • Strous GJ, van Kerkhof P, van Meer G, Rijnboutt S, Stoorvogel W (1993) Differential effects of brefeldin A on transport of secretory and lysosomal proteins. J Biol Chem 268:2341–2347

    PubMed  CAS  Google Scholar 

  • Thyberg J, Moskalewski S (1992) Reorganization of the Golgi complex in association with mitosis: redistribution of mannosidase II to the endoplasmic reticulum and effects of brefeldin A. J Submicrosc Cytol Pathol 24:495–508

    PubMed  CAS  Google Scholar 

  • Trinchera M, Fabbri M, Ghidoni R (1991) Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J Biol Chem 266:20907–20912

    PubMed  CAS  Google Scholar 

  • Trinchera M, Ghidoni R (1989) Two glycosphingolipids sialyltransferases are localized in different sub-Golgi compartments in rat liver. J Biol Chem 264:15766–15769

    PubMed  CAS  Google Scholar 

  • Trinchera M, Pirovano B, Ghidoni R (1990) Sub-Golgi distribution in rat liver of CMP-NeuAc GM3- and CMP-NeuAc:GT1bα2→8 sialyltransferases and comparison with the distribution of the other glycosyltransferase activity involved in ganglioside biosynthesis. J Biol Chem 265:18242–18247

    PubMed  CAS  Google Scholar 

  • van’t Hof W, Silvius J, Wieland F, van Meer G (1992) Epithelial sphingolipid sorting allows for extensive variation of the fatty acyl chain and the sphingosine backbone. Biochem J 283:913–917

    Google Scholar 

  • van’t Hof W, van Meer G (1990) Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. J Cell Biol 111:977–986

    Article  Google Scholar 

  • van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K (1990) Uncoupling of ganglioside biosynthesis by Brefeldin A. Eur J Cell Biol 51:135–139

    PubMed  Google Scholar 

  • van Genderen IL, van Meer G, Slot JW, Geuze HJ, Voorhout WF (1991) Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol 115:1009–1019

    Article  PubMed  Google Scholar 

  • van Helvoort ALB, van’t Hof W, Ritsema T, Sandra A, van Meer G (1994) Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (MDCK) cells. Evidence for the reserve action of the sphingomyelin synthase. J Biol Chem (in press)

    Google Scholar 

  • van Meer G (1989) Lipid traffic in animal cells. Annu Rev Cell Biol 5:247–275

    Article  PubMed  Google Scholar 

  • van Meer G, Burger KNJ (1992) (Glyco)sphingolipid traffic sorted out? Trends Cell Biol 2:332–337

    Article  PubMed  Google Scholar 

  • van Meer G, Simons K (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 5:1455–1464

    PubMed  Google Scholar 

  • van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36:51–58

    Article  PubMed  Google Scholar 

  • van Meer G, Stelzer EHK, Wijnaendts-van-Resandt RW, Simons K (1987) Sorting of sphingo- lipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 105:1623–1635

    Article  PubMed  Google Scholar 

  • van Meer G, van’t Hof W (1993) Epithelial sphingolipid sorting is insensitive to reorganization of the Golgi by nocodazole, but is abolished by monensin in MDCK cells and by brefeldin A in Caco-2 cells. J Cell Sci 104:833–842

    PubMed  Google Scholar 

  • Young WW Jr, Lutz MS, Blackburn WA (1992) Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J Biol Chem 267:12011–12015

    PubMed  CAS  Google Scholar 

  • Young WW Jr, Lutz MS, Mills SE, Lechler-Osborn S (1990) Use of brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block. Proc Natl Acad Sci USA 87:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Zurzolo C, van’t Hof W, Lisanti M, Caras I, Nitsch L, van Meer G, Rodriguez Boulan E (1993) Basolateral targeting of GPI-anchored proteins and glycosphingolipids in a polarized thyroid epithelial cell line. J Cell Biochem 178:278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Meer, G., Thielemans, M., van Genderen, I.L., van Helvoort, A.L.B., van der Bijl, P., Burger, K.N.J. (1994). Lipid Transport from the Golgi Complex to the Plasma Membrane of Epithelial Cells. In: Wieland, F., Reutter, W. (eds) Glyco-and Cellbiology. Colloquium der Gesellschaft für Biologische Chemie 22.–24. April 1993 in Mosbach/Baden, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78729-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78729-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78731-7

  • Online ISBN: 978-3-642-78729-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics