Skip to main content

Topological Coupling between Promoters

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 8))

  • 735 Accesses

Abstract

When transcription is initiated by RNA polymerase, a series of defined intermediate states are formed, during which the enzyme binds to the promoter and ultimately melts the helix to form an open complex (Siebenlist 1979). The first phosphodiester bond is then made, and the RNA polymerase clears the promoter in the propagation phase of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard JD, Bertrand KP (1992) Membrane topology of the pBR322 tetracycline resistance protein. J Biol Chem 267:17809–17819

    PubMed  CAS  Google Scholar 

  • Amouyal M, Buc H (1987) Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. J Mol Biol 195:795–808

    Article  PubMed  CAS  Google Scholar 

  • Baker TA, Kornberg A (1988) Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell 55:113–123

    Article  PubMed  CAS  Google Scholar 

  • Beck DJ, Popoff S, Sanear A, Rupp WD (1985) Nucleic Acids Res 13:7395–7412

    Article  PubMed  CAS  Google Scholar 

  • Boublikova P, Palecek E (1989) Probing of B-Z junctions in recombinant plasmids in vitro and in the cell with different osmium tetroxide complexes. Gen Physiol Biophys 8:475–490

    PubMed  CAS  Google Scholar 

  • Bowater R, Aboul-ela F, Lilley DMJ (1991) Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in A+T-rich regions that promote low-salt cruciform extrusion. Biochemistry 30:11495–11506

    Article  PubMed  CAS  Google Scholar 

  • Brill SJ, Sternglanz R (1988) Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell 54:403–411

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Bowater R, Dorman C, Lilley DMJ (1992) Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci USA 89:8784–8788

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Bowater R, Lilley DMJ (1993) Activation of the leu-500 promoter: a topological domain generated by divergent transcription in a plasmid. Biochemistry 32:13162–13170

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Bowater RP, Lilley DMJ (1994) Topological promoter coupling in Escherichia coli: ΔtopA-dependent activation of the leu-500 promoter on a plasmid. J Bacteriol (in press).

    Google Scholar 

  • Cook DN, Ma D, Pon NG, Hearst JE (1992) Dynamics of DNA supercoiling by transcription in Escherichia coli. Proc Natl Acad Sci USA 89:10603–10607

    Article  PubMed  CAS  Google Scholar 

  • Dayn A, Malkhosyan S, Mirkin SM (1992) Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res 20:5991–5997

    Article  PubMed  CAS  Google Scholar 

  • De Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci USA 80:21–25

    Article  PubMed  Google Scholar 

  • Deuschle U, Kammerer W, Gentz R, Bujard H (1986) Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J 5:2987–2994

    PubMed  CAS  Google Scholar 

  • DiNardo A, Voelkel KA, Sternglanz R, Reynolds AE, Wright A (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:43–51

    Article  PubMed  CAS  Google Scholar 

  • Dröge P (1993) Transcription-driven site-specific DNA recombination in vitro. Proc Natl Acad Sci USA 90:2759–2763

    Article  PubMed  Google Scholar 

  • Dröge P, Nordheim A (1991) Transcription-induced conformational change in a topologically closed DNA domain. Nucleic Acids Res 19:2941–2946

    Article  PubMed  Google Scholar 

  • Dubnau E, Margolin P (1972) Suppression of promoter mutations by the pleiotropic supX mutations. Mol Gen Genet 117:91–112

    Article  PubMed  CAS  Google Scholar 

  • Eckert B, Beck CF (1989) Topology of the transposon Tn10-encoded tetracycline resitance protein within the inner membrane of Escherichia coli. J Biol Chem 264:11663–11670

    PubMed  CAS  Google Scholar 

  • Geliert M, O’Dea MH, Itoh T, Tomizawa J-I (1976) Novobiocin and coumermycin inhibit DNA supercoiling catalysed by DNA gyrase. Proc Natl Acad Sci USA 73:4474–4478

    Article  Google Scholar 

  • Geliert M, Mizuuchi K, O’Dea MH, Ohmori H, Tomizawa J (1979) DNA gyrase and DNA supercoiling. Cold Spring Harbor Symp Quant Biol 43:35–40

    Google Scholar 

  • Gemmill RM, Tripp M, Friedman SB, Calvo JM (1984) Promoter mutation causing catabolite repression of the Salmonella typhimurium leucine Operon. J Bacteriol 158: 948–953

    PubMed  CAS  Google Scholar 

  • Greaves DR, Patient RK, Lilley DMJ (1985) Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J Mol Biol 185:461–478

    Article  PubMed  CAS  Google Scholar 

  • Haniford DB, Pulleyblank DE (1985) Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res 13:4343–4363

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Wessler SR, Gemmill RM, Calvo JM (1986) High A+T content conserved in DNA sequences upstream of leuABCD in Escherichia coli and Salmonella typhimurium. J Bacteriol 166:1113–1117

    PubMed  CAS  Google Scholar 

  • Jaworski A, Blaho JA, Larson JE, Shimizu M, Wells RD (1989) Tetracycline promoter mutations decrease non-B DNA structural transitions, negative linking differences and deletions in recombinant plasmids in Escherichia coli. J Mol Biol 207:513–526

    Article  PubMed  CAS  Google Scholar 

  • Koshland D, Botstein D (1982) Evidence for posttranslational translocation of β-lactamase across the bacterial inner membrane. Cell 30:893–902

    Article  PubMed  CAS  Google Scholar 

  • Kowalski D, Natale DA, Eddy MJ (1988) Stable DNA unwinding, not “breathing”, accounts for single-strand-specific nuclease hypersensitivity of specific A+T rich sequences. Proc Natl Acad Sci USA 85:9464–9468

    Article  PubMed  CAS  Google Scholar 

  • Lee FS, Bauer WR (1985) Temperature dependence of the gel electrophoretic mobility of superhelical DNA. Nucleic Acids Res 13:1665–1682

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ (1980) The inverted repeat as a recognisable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci USA 77:6468–6472

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027

    Article  PubMed  CAS  Google Scholar 

  • Lockshon D, Morris DR (1983) Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors. Nucleic Acids Res 11: 2999–3017

    Article  PubMed  CAS  Google Scholar 

  • Lodge JK, Kazik T, Berg DE (1989) Formation of supercoiling domains in plasmid pBR322. J Bacteriol 171:2181–2187

    PubMed  CAS  Google Scholar 

  • Lynch AS, Wang JC (1993) Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175:1645–1655

    PubMed  CAS  Google Scholar 

  • Margolin P, Zumstein L, Sternglanz R, Wang JC (1985) The Escherichia coli supX locus is topA, the structural gene for DNA topoisomerase I. Proc Natl Acad Sci USA 82:5437–5441

    Article  PubMed  CAS  Google Scholar 

  • McClellan JA, Boublikova P, Palecek E, Lilley DMJ (1990) Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc Natl Acad Sci USA 87:8373–8377

    Article  PubMed  CAS  Google Scholar 

  • Mukai FH, Margolin P (1963) Analysis of unlinked suppressors of a 0° mutation in Salmonella. Proc Natl Acad Sci USA 50:140–148

    Article  PubMed  CAS  Google Scholar 

  • Ostrander EA, Benedetti P, Wang JC (1990) Template supercoiling by a chimera of yeast GAL4 protein and phage T7 RNA polymerase. Science 249:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Panayotatos N, Wells RD (1981) Cruciform structures in supercoiled DNA. Nature 289:466–470

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Nordheim A, Rich A, Wang JC (1982) Flipping of cloned d(pCpG)n·d(pCpG)n DNA sequences from right- to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc Natl Acad Sci USA 79:4560–4564

    Article  PubMed  CAS  Google Scholar 

  • Pruss G (1985) DNA topoisomerase I mutants. Increased heterogeneity in linking number and other replicon-dependent changes in DNA supercoiling. J Mol Biol 185:51–63

    Article  PubMed  CAS  Google Scholar 

  • Pruss G, Drlica K (1985) DNA supercoiling and suppression of the leu-500 promoter mutation. J Bacteriol 164:947–949

    PubMed  CAS  Google Scholar 

  • Pruss GJ, Drlica K (1986) Topoisomerase I mutants; the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci USA 83:8952–8956

    Article  PubMed  CAS  Google Scholar 

  • Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56: 521–523

    Article  PubMed  CAS  Google Scholar 

  • Pruss GJ, Manes SH, Drlica K (1982) Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near the gyrase genes. Cell 31:35–42

    Article  PubMed  CAS  Google Scholar 

  • Rahmouni AR, Wells RD (1989) Stabilization of Z-DNA in vivo by localized supercoiling. Science 246:358–363

    Article  PubMed  CAS  Google Scholar 

  • Rahmouni AR, Wells RD (1992) Direct evidence for the effect of transcription on local DNA supercoiling in vivo. J Mol Biol 223:131–144

    Article  PubMed  CAS  Google Scholar 

  • Richardson SMH, Higgins CF, Lilley DMJ (1984) The genetic control of DNA supercoiling in Salmonella typhimurium. EMBO J 3:1745–1752

    PubMed  CAS  Google Scholar 

  • Richardson SMH, Higgins CF, Lilley DMJ (1988) DNA supercoiling and the leu-500 mutation of Salmonella typhimurium. EMBO J 7:1863–1869

    PubMed  CAS  Google Scholar 

  • Siebenlist U (1979) RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature 279:651–652

    Article  PubMed  CAS  Google Scholar 

  • Singleton CK, Klysik J, Stirdivant SM, Wells RD (1982) Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299:312–316

    Article  PubMed  CAS  Google Scholar 

  • Smith GR (1981) DNA supercoiling: another level for regulating gene expression. Cell 24:599–600

    Article  PubMed  CAS  Google Scholar 

  • Trucksis M, Golub EI, Zabel DJ, Depew RE (1981) Escherichia coli and Salmonella typhimurium supX genes specify deoxyribonucleic acid topoisomerase I. J Bacteriol 147:679–681

    PubMed  CAS  Google Scholar 

  • Tsao Y-P, Wu H-Y, Liu LF (1989) Transcription-dependent supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 56:111–118

    Article  PubMed  CAS  Google Scholar 

  • Wu H-Y, Shyy S, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, D., Bowater, R.P., Lilley, D.M.J. (1994). Topological Coupling between Promoters. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78666-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78666-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78668-6

  • Online ISBN: 978-3-642-78666-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics