Skip to main content

Resolvase-Mediated Site-Specific Recombination

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 8))

Abstract

Conservative site-specific recombination involves the reciprocal exchange of DNA segments by precise breakage and rejoining processes that involve no loss or synthesis of DNA. In principle, such events can occur intermolecularly (resulting in fusion of the two recombining partners) or intramolecularly (resulting in inversion or excision of one DNA segment relative to the other), although in most biological systems this directionality is strictly controlled. Biological roles of site-specific recombination include chromosomal integration and excision of phage genomes, monomerization of plasmid chromosomes, alternation of gene expression, resolution of transposition intermediates, and fusion of gene cassettes into a functional gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Meguid SS, Grindley NDF, Templeton NS, Steitz TA (1984) Cleavage of the site-specific recombination protein γδ resolvase; the smaller fragment binds DNA specifically. Proc Natl Acad Sci USA 81:2001–2005

    Article  PubMed  CAS  Google Scholar 

  • Bednarz AL, Boocock MR, Sherratt DJ (1990) Determinants of correct res site alignment in site-specific recombination by Tn3 resolvase. Genes Dev 4:2366–2375

    Article  PubMed  CAS  Google Scholar 

  • Benjamin HW, Cozzarelli NR (1986) Site-directed synapsis in recombination: slithering and random collision of sites. In: Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research. XXIX. Genetic Chemistry: The Molecular Basis of Heredity. Robert A Welch Foundation, Houston, TX, pp 107–126

    Google Scholar 

  • Benjamin HW, Cozzarelli NR (1988) Isolation and charaterization of the Tn3 synaptic intermediate. EMBO J 7:1897–1905

    PubMed  CAS  Google Scholar 

  • Benjamin HW, Cozzarelli NR (1990) Geometric arrangements of Tn3 resolvase sites. J Biol Chem 265:6441–6447

    PubMed  CAS  Google Scholar 

  • Boocock MR, Brown JL, Sherratt DJ (1986) Structural and catalytic properties of specific complexes between the Tn3 resolvase and the recombination site, res. Biochem Soc Trans 14:214–216

    PubMed  CAS  Google Scholar 

  • Boocock MR, Brown JL, Sherratt DJ (1987) Topological specificity of Tn3 resolvase catalysis. In: Kelly TJ, McMacken R (eds) DNA replication and recombination. Alan R Liss, New York, pp 703–718

    Google Scholar 

  • Chen JW, Lee J, Jayaram M (1992) DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69:647–658

    Article  PubMed  CAS  Google Scholar 

  • Chen JW, Yang SH, Jayaram M (1993) Tests for the fractional active-site model in Flp site-specific recombination. J Biol Chem 268:14417–14425

    PubMed  CAS  Google Scholar 

  • Cox MM (1989) DNA inversion in the 2μm plasmid Saccharomyces cerevisiae. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 661–670

    Google Scholar 

  • Cozzarelli NR, Krasnow MA, Gerrard SP, White JH (1984) A topological treatment of recombination and topoisomerases. Cold Spring Harbor Symp Quant Biol 49:383–400

    PubMed  CAS  Google Scholar 

  • Craig NL (1988) The mechanism of conservative site-specific recombination. Annu Rev Genet 22:77–105

    Article  PubMed  CAS  Google Scholar 

  • Dodd HM, Bennett PM (1987) The R46 site-specific recombination system is a homologue of the Tn3 and γδ (Tn1000) cointegrate resolution system. J Gen Microbiol 133:2031–2039

    PubMed  CAS  Google Scholar 

  • Dröge P, Hatfull GF, Grindley NDF, Cozzarelli NR (1990) The two functional domains of γδ resolvase act on the same recombination site: implications for the mechanism of strand exchange. Proc Natl Acad Sci USA 87:5336–5340

    Article  PubMed  Google Scholar 

  • Feng J-A, Johnson RC, Dickerson RE (1994) Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science 263:348–355

    Article  PubMed  CAS  Google Scholar 

  • Garnier T, Saurin W, Cole ST (1987) Molecular characterization of the resolvase gene res carried by a multicopy plasmid from Clostridium perfringens: common evolutionary origin for prokaryotic site-specific recombinases. Mol Microbiol 1:371–376

    Article  PubMed  CAS  Google Scholar 

  • Gerlitz M, Hrabak O, Schwab H (1990) Partitioning of broad-host range plasmid RP4 is a complex system involving site specific recombination. J Bacteriol 172:6194–6203

    PubMed  CAS  Google Scholar 

  • Glasgow AC, Hughes KT, Simon MI (1989) Bacterial DNA inversion systems. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 637–659

    Google Scholar 

  • Graham KS, Dervan PB (1990) Structural motif of the DNA binding domain of γδ resolvase characterized by affinity cleaving. J Biol Chem 265:16534–16540

    PubMed  CAS  Google Scholar 

  • Grindley NDF (1993) Dissection of a macromolecular nucleoprotein complex: unequal roles for γδ resolvase within the synaptosome. Science 262:738–740

    Article  PubMed  CAS  Google Scholar 

  • Hall SC, Haiford SE (1993) Specificity of DNA recognition in the nucleoprotein complex for site-specific recombination by Tn21 resolvase. Nucleic Acids Res. 21:5712–5719

    Article  PubMed  CAS  Google Scholar 

  • Hatfull GF, Grindley NDF (1986) Analysis of γδ resolvase mutants in vitro: evidence for an interaction between serine-10 of resolvase and site I of res. Proc Natl Acad Sci USA 82:5429–5433

    Article  Google Scholar 

  • Hatfull GF, Grindley NDF (1988) Resolvases and DNA-invertases: a family of enzymes active in site-specific recombination. In: Kucherlapati R, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington, DC, pp 37–396

    Google Scholar 

  • Hatfull GF, Noble SN, Grindley NDF (1987) The γδ resolvase induces an unusual DNA structure at the recombinational crossover point. Cell 49:103–110

    Article  PubMed  CAS  Google Scholar 

  • Hatfull GF, Salvo JJ, Falvey EE, Rimphanitchayakit V, Grindley NDF (1988) Site specific recombination by the γδ resolvase. In: Kingsman AJ, Kingsman SM, Chater KF (eds) Transposition. Society for General Microbiology Symposium 43, Cambridge University Press, Cambridge, pp 149–181

    Google Scholar 

  • Hatfull GF, Sanderson MR, Freemont PS, Raccuia PR, Grindley NDF, Steitz TA (1989) Preparation of heavy atom derivatives using site-directed mutagenesis: introduction of cysteine residues into γδ resolvase. J Mol Biol 208:661–667

    Article  PubMed  CAS  Google Scholar 

  • Heichman KA, Moskowitz IPG, Johnson RC (1991) Configuration of DNA strands and mechanism of strand exchange in the Hin invertasome as revealed by analysis of recombinant knots. Genes Dev 5:1622–1634

    Article  PubMed  CAS  Google Scholar 

  • Hughes RE, Hatfull GF, Rice P, Steitz TA, Grindley NDF (1990) Cooperativity mutants of the γδ resolvase identify an essential inter-dimer interaction. Cell 63:1331–1338

    Article  PubMed  CAS  Google Scholar 

  • Hughes RE, Rice PA, Steitz TA, Grindley NDF (1993) Protein-protein interactions directing resolvase site-specific recombination: a structure-function analysis. EMBO J 12:1447–1458

    PubMed  CAS  Google Scholar 

  • Jeltsch A, Alves J, Wolfes H, Maass G, Pingoud A (1993) Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Proc Natl Acad Sci USA 90:8499–8503

    Article  PubMed  CAS  Google Scholar 

  • Johnson RC (1991) Mechanism of site-specific DNA inversion in bacteria. Curr Opinion Genet Dev 1:404–411

    Article  CAS  Google Scholar 

  • Kahmann R, Mertens G, Klippel A, Brauer B, Rudt F, Kock C (1987) The mechanism of G inversion. In: Kelly TJ, McMacken R (eds) DNA replication and recombination. Alan R Liss, New York, pp 681–690

    Google Scholar 

  • Kanaar R, van de Putte P, Cozzarelli NR (1988) Gin-mediated DNA inversion: product structure and the mechanism of strand exchange. Proc Natl Acad Sci USA 85:752–756

    Article  PubMed  CAS  Google Scholar 

  • Kanaar R, Klippel A, Shekhtman E, Dungan JM, Kahmann R, Cozzarelli NR (1990) Processive recombination by the phage Mu Gin sytem: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62:353–366

    Article  PubMed  CAS  Google Scholar 

  • Klippel A, Mertens G, Patschinsky T, Kahmann R (1988a) The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J 1229–1237

    Google Scholar 

  • Klippel A, Cloppenborg K, Kahmann R (1988b) Isolation and characterization of unusual gin mutants. EMBO J 7:3983–3989

    PubMed  CAS  Google Scholar 

  • Klippel A, Kanaar R, Kahmann R, Cozzarelli NR (1993) Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants. EMBO J 12:1047–1057

    PubMed  CAS  Google Scholar 

  • Krasnow MA, Cozzarelli NR (1983) Site-specific relaxation and recombination by Tn3 resolvase: recognition of the DNA path between orientated res sites. Cell 32:1313–1324

    Article  PubMed  CAS  Google Scholar 

  • Krasnow MA, Stasiak A, Spengler SJ, Dean F, Koller T, Cozzarelli NR (1983) Determination of the absolute handedness of knots and catenanes of DNA. Nature 304:559–560

    Article  PubMed  CAS  Google Scholar 

  • Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58:913–949

    Article  PubMed  CAS  Google Scholar 

  • Mack DP, Sluka JP, Shin JA, Griffith JH, Simon MI Dervan PB (1990) Orientation of the putative recognition helix in the DNA binding domain of Hin recombinase complexed with the hix site. Biochemistry 29:6561–6567

    Article  PubMed  CAS  Google Scholar 

  • Mazzarelli JM, Ermácora MR, Fox RO, Grindley NDF (1993) Mapping interactions between the catalytic domain of resolvase and its DNA substrate using cysteine-coupled EDTA-iron. Biochemistry 260:2979–2986

    Article  Google Scholar 

  • Mizuuchi K, Geliert M, Weisberg RA, Nash HA (1980) Catenation and supercoiling in the products of phage λ integrative recombination in vitro. J Mol Biol 141:485–494

    Article  PubMed  CAS  Google Scholar 

  • Newman BJ, Grindley NDF (1984) Mutants of the γδ resolvase, a genetic analysis of the recombination function. Cell 38:463–469

    Article  PubMed  CAS  Google Scholar 

  • Parker CN, Halford SE (1991) Dynamics of long range interactions on DNA: the speed of synapsis during site-specific recombination by resolvase. Cell 66:781–791

    Article  PubMed  CAS  Google Scholar 

  • Reed RR, Grindley NDF (1981) Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site. Cell 25:721–728

    Article  PubMed  CAS  Google Scholar 

  • Reed RR (1981) Transposon-mediated site-specific recombination: a defined in vitro system. Cell 25:713–719

    Article  PubMed  CAS  Google Scholar 

  • Reed RR, Moser CD (1984) Resolvase-mediated recombination intermediates involve a serine-DNA linkage. Cold Spring Harbor Symp Quant Biol 49:245–249

    PubMed  CAS  Google Scholar 

  • Rice PA, Steitz TA (1994a) Model for a DNA-mediated synaptic complex suggested by crystal packing of γδ resolvase subunits. EMBO J 13:1514–1524

    PubMed  CAS  Google Scholar 

  • Rice PA, Steitz TA (1994b) Refinement of γδ resolvase reveals a striking flexible molecule. Structure (in press)

    Google Scholar 

  • Rimphanitchayakit V, Grindley NDF (1990) Saturation mutagenesis of the DNA site bound by the small carboxy-terminal domain of γδ resolvase. EMBO J 9:719–725

    PubMed  CAS  Google Scholar 

  • Rimphanitchayakit V, Hatfull GF, Grindley NDF (1989) The 43 residue DNA binding domain of γδ resolvase binds adjacent major and minor grooves of DNA. Nucleic Acids Res 17:1035–1050

    Article  PubMed  CAS  Google Scholar 

  • Rowland S-J, Dyke KGH (1989) Characterization of the staphylococcal β-lactamase transposon, Tn552. EMBO J 8:2761–2773

    PubMed  CAS  Google Scholar 

  • Sadowski P (1986) Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165:341–347

    PubMed  CAS  Google Scholar 

  • Saenger W, Sandmann C, Theis K, Stainhov EB, Kostewa D, Labalim J, Grantin J (1993) Structural and functional aspects of the DNA binding protein FIS, In: Eckstein F, Lilley DMJ (eds) Nucleic Acids and Molecular Biology, vol 7. Springer, Berlin Heidelberg New York, pp 159–169

    Google Scholar 

  • Salvo JJ, Grindley NDF (1988) Resolvase bends the res site into a recombinogenic complex. EMBO J 7:3609–3616

    PubMed  CAS  Google Scholar 

  • Sanderson MR, Freemont PS, Rice P, Goldman A, Hatfull GF, Grindley NDF, Steitz TA (1990) The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7 Ã… resolution. Cell 63:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Samori Y, Kobayashi Y (1990) The cisA cistron of Bacillus subtilis sporulation gene spoIVC encodes a protein homologous to a site-specific recombinase. J Bacteriol 172:1092–1098

    PubMed  CAS  Google Scholar 

  • Sherratt D (1989) Tn3 and related transposable elements: site-specific recombination and transposition. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 163–184

    Google Scholar 

  • Sluka JP, Horvath SJ, Glasgow AC, Simon MI, Dervan PD (1990) Importance of minor groove contacts for recognition of DNA by the binding domain of Hin recombinase. Biochemistry 29:6551–6561

    Article  PubMed  CAS  Google Scholar 

  • Stark WM, Boocock MR (1994) The linkage change of a knotting reaction catalysed by Tn3 resolvase. J Mol Biol (in press)

    Google Scholar 

  • Stark WM, Sherratt DJ, Boocock MR (1989a) Site-specific recombination by Tn3 resolvase. Trends Genet 5:304–309

    Article  PubMed  CAS  Google Scholar 

  • Stark WM, Sherratt DJ, Boocock MR (1989b) Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58:779–790

    Article  PubMed  CAS  Google Scholar 

  • Stark WM, Grindley NDF, Hatfull GF, Boocock MR (1991) Resolvase-catalysed reactions between res sites differing in the central dinucleotide of substite I. EMBO J 10:3541–3548

    PubMed  CAS  Google Scholar 

  • Stark WM, Boocock MR, Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8:432–439

    Article  PubMed  CAS  Google Scholar 

  • Stragier P, Kunkel B, Kroos L, Losick R (1989) Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243:507–512

    Article  PubMed  CAS  Google Scholar 

  • Wasserman SA, Cozzarelli NR (1985) Determination of the stereo structure of the product of Tn3 resolvase by a general method. Proc Natl Acad Sci USA 82:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Wasserman SA, Dungan JM, Cozzarelli NR (1985) Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229:171–174

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grindley, N.D.F. (1994). Resolvase-Mediated Site-Specific Recombination. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78666-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78666-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78668-6

  • Online ISBN: 978-3-642-78666-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics