Skip to main content

Transcriptional, Posttranscriptional, and Posttranslational Regulation of G-Proteins and Adrenergic Receptors

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

  • 97 Accesses

Abstract

Transmembrane signaling via G-protein-linked pathways is regulated dynamically. Catecholamines regulate fundamental physiological pathways, such as respiration, cardiac rate, and lipolysis. Consequently, adrenergic receptors and their G-protein partners through which adenylyl cyclase, phospholipase C, and other effectors are controlled have been adopted as models for intensive study of the regulation of G-protein-mediated pathways. The epertoire of mechanisms for regulation includes transcriptional, posttransriptional, and posttranslational components. Acute, short-term (seconds to minutes) regulation, typified by agonist-induced desensitization, virtually precludes significant transcriptional and posttranscriptional components which are capable of changing steady-state mRNA levels and thereby protein expression. Posttranslational mechanisms, such as protein phosphorylatiion, are most prominent in the acute phases, whereas longer term (hours) regulation may include transcriptional, posttranscriptional, as well as posttranslational components (Hausdorff et al. 1990). Both receptors (George et al. 1988) and G-proteeins (Rapiejko et al. 1989) have been shown to be the locus of physiological regulation at which an entire pathway can be influenced. Furthermore, G-protein-linked pathways do not operate in isolation and are subject not only to agonist-induced homologous regulation but also to heterologous regulation by ligands operating via other G-protein-linked pathways, gene regulaation (steroids, retinoids), and/or tyrosine kinases (insulin and growth factors). This chapter highlights mechanisms by which G-protein-mediated pathways are regulated , drawing heavily upon our knowledge of adrenergic receptor-mediated responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bouvier M, Collins S, O’Dowd BF, Campbell PT, De Blasi, Kobilka BK, MacGregor GP, Caron MG, Lefkowitz RL (1989) Two distinct pathways of Cyclic AMP mediated down-regulation of the β2-adrenergic receptor: phosphorylation of the receptor and regulation of its mRNA. J Biol Chem 264:16786–16792.

    PubMed  CAS  Google Scholar 

  • Chang F-H, Bourne, HR (1989) Cholera toxin induces cAMP-independent degradation of Gs. J Biol Chem 264:5452–5357.

    Google Scholar 

  • Collins S, Bouvier M, Bolanowski MA, Caron MG, Lefkowitz RJ (1989) cyclic AMP stimulates transcription of the β2-adrenergic receptor gene in response to short term agonist exposure. Proc Natl Acad Sci USA 86:4853–4857.

    Article  PubMed  CAS  Google Scholar 

  • Collins S, Altschmied J, Herbsman O, Caron MG, Mellon PL, Lefkowitz RJ (1990) A cyclic AMP response element in the β2-adrenergic receptor gene confers transcriptional autoregulation by cyclic AMP. J Biol Chem 265:19330–19335.

    PubMed  CAS  Google Scholar 

  • Collins S, Caron MG, Lefkowitz RJ (1991) Regulation of adrenergic responsiveness through modulation of receptor expression. Annu Rev Physiol 53:497–508.

    Article  PubMed  CAS  Google Scholar 

  • Galvin-Parton PA, Watkins DC, Malbon CC (1990) Retinoic acid modulation of transmembrane signaling. J Biol Chem 265:17771–17779.

    PubMed  CAS  Google Scholar 

  • George ST, Berrios M, Hadcock JR, Wang HY, Malbon CC (1988) Receptor density and cAMP accumulation: analysis in CHO cells exhibiting stable expression of a cDNA that encodes the β2-adrenergic receptor. Biochem Biophys Res Commun 150:665–672.

    Article  PubMed  CAS  Google Scholar 

  • Hadcock JR, Malbon CC (1988a) Down-regulation of β-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc Nat Acad Sci USA 85:5021–5025.

    Article  PubMed  CAS  Google Scholar 

  • Hadcock JR, Malbon CC (1988b) Regulation of β-adrenergic receptors by “permissive” hormones: glucocorticoids increase steady-state levels of receptor mRNA. Proc Nat Acad Sci USA 85:8415–8419.

    Article  PubMed  CAS  Google Scholar 

  • Hadcock JR, Ros M, Malbon CC (1989a) Agonist regulation of β-adrenergic receptor mRNA: analysis in S49 mouse lymphoma mutants. J Biol Chem 264:13956–13961.

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Wang HY, Malbon CC (1989b) Agonist-induced destabilization of β-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced up-regulation of β-adrenergic receptors. J Biol Chem 264:19928–19933.

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Williams DW, Malbon CC (1989c) Physiological regulation at the level of mRNA. Am J Physiol 257:C457–C465.

    Google Scholar 

  • Hadcock JR, Ros M, Watkins DC, Malbon CC (1990) Cross-regulation between G-protein-mediated pathways. Stimulation of adenylyl cyclase increases expression of the inhibitory G-protein, G-2. J Biol Chem 265:14784–14790.

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Malbon CC (1991) Regulation of receptor expression by agonists: transcriptional and post-transcriptional controls. Trends in Neurological Sciences 14:242–247.

    Article  CAS  Google Scholar 

  • Hadcock JR, Malbon CC (1992) Adrenal dysfunction and G-protein-mediated pathways. In: Milligan G, Wakelam M (eds) G-proteins: signal transduction and disease. Academic, London, p 109.

    Google Scholar 

  • Hadcock JR, Port JD, Malbon CC (1991) Cross-regulation between G-protein-mediated pathways: activation of the inhibitory pathway of adenylyl cyclase increases expression of β2-adrenergic receptors. J Biol Chem 266:11915–11922.

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Port JD, Malbon CC (to be published) Cross-talk between tyrosine kinase and G-protein-linked receptors: phosphorylation of β2-adrenergic receptors in response to insulin. J Biol Chem.

    Google Scholar 

  • Hausdorff WP, Caron MG, Lefkowitz RJ (1990) Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J 4:2881–2889.

    PubMed  CAS  Google Scholar 

  • Izzo NJ, Seidman CE, Collins S, Colucci WS (1990) Alpha-1 adrenergic receptor mRNA level is regulated by norepinephrine in rabbit aortic smooth muscle cells. Proc Natl Acad Sci USA 87:6268–6271.

    Article  PubMed  CAS  Google Scholar 

  • Kozasa T, Itoh H, Tsukamoto T, Kaziro Y (1988) Isolation and characterization of the human G gene. Proc Natl Acad Sci USA 85:2081–2085.

    Article  PubMed  CAS  Google Scholar 

  • Levine MA, Feldman AM, Robishaw JD, Ladenson PW, Ahn TG, Moroney JF, Smallwood PM (1990) Influence of thyroid hormone status on expression of genes encoding G-protein subunits in the rat heart. J Biol Chem 265:3553–3560.

    PubMed  CAS  Google Scholar 

  • Longabaugh JP, Didsbury J, Spiegel AM, Stiles GL (1989) Modification of the rat adipocyte A1 adenosine receptor-adenylate cyclase system during chronic exposure to an Al adenosine receptor agonist: alterations in the quantity of G and Giα2 are not associated with changes in their mRNA. Mol Pharmacol 36:681–688.

    PubMed  CAS  Google Scholar 

  • Malbon CC (1980) Liver cell adenylate cyclase and β-adrenergic receptors: increased β-adrenergic receptor number and responsiveness in the hypothyroid rat. J Biol Chem 255:8692–8699.

    PubMed  CAS  Google Scholar 

  • Malbon CC, Rapiejko PJ, Mangano TJ (1985) Fat cell adenylate cyclase system: enhanced inhibition by adenosine and gtp in the hypothyroid rat. J Biol Chem 260:2558–2564.

    PubMed  CAS  Google Scholar 

  • Milligan G, Spiegel AM, Unson CG, Saggerson ED (1987) Chemically induced hypothyroidism produces elevated amounts of the α subunit of the inhibitory guanine nucleotide binding protein (Gi) and the β subunit common to all G-proteins. Biochem J 247:223–227.

    PubMed  CAS  Google Scholar 

  • Montmayeur JP, Borrelli E (1991) Transcription mediated by a cAMP-responsive element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci USA 88:3135–3139.

    Article  PubMed  CAS  Google Scholar 

  • Morris GM, Hadcock JR, Malbon CC (1991) Cross-regulation between G-protein coupled receptors: activation of β2-adrenergic receptors increases α1-adrenergic receptor mRNA levels. J Biol Chem 266:2233–2238.

    PubMed  CAS  Google Scholar 

  • Port JD, Hadcock JR, Malbon CC (1992) Cross-regulation between G-protein-mediated pathways: acute activation of the inhibitory pathway of adenylyl cyclase reduces β2-adrenergic receptor phosphorylation and increases β-adrenergic receptor responsiveness. J Biol Chem 267:8468–8472.

    PubMed  CAS  Google Scholar 

  • Rapiejko PJ, Watkins DC, Ros M, Malbon CC (1989) Thyroid hormones regulate G-protein β-subunit mRNA expression in vivo. J Biol Chem 264:16183–16189.

    PubMed  CAS  Google Scholar 

  • Rapiejko PJ, Watkins DC, Ros M, Malbon CC (1990) G-protein subunit mRNA levels in rat heart, liver, and adipose tissues: analysis by DNA-excess solution hybridization. Biochim Biophys Acta 1052:348–350.

    Article  PubMed  CAS  Google Scholar 

  • Ros M, Northup JK, Malbon CC (1988) Steady-state levels of G-proteins and β-adrenergic receptors in rat fat cells: permissive effects of thyroid hormones. J Biol Chem 263:4362–4368.

    PubMed  CAS  Google Scholar 

  • Ros M, Watkins DC, Rapiejko PJ, Malbon CC (1989) Glucocorticoids modulate mRNA levels of G-protein β-subunits Biochem J 260:271–275.

    PubMed  CAS  Google Scholar 

  • Saito N, Guitart X, Hayward M, Tallman JF, Duman RS, Nestler EJ (1989) Corticosterone differentially regulates the expression of G and Giα2 messenger RNA and protein in rat cerebral cortex. Proc Natl Acad Sci USA 86:3906–3910.

    Article  PubMed  CAS  Google Scholar 

  • Saggerson D (1992) Thyroid disorders. In: Milligan G, Wakelam M (eds) G-proteins: signal transduction and disease. Academic Press, London.

    Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Lipfert L, Malbon CC, Bahouth SS (1989) Site-directed antibodies define the topography of the β-adrenergic receptor. J Biol Chem 264:14424–14434.

    PubMed  CAS  Google Scholar 

  • Wang HY, Berrios M, Malbon CC (1989) Indirect immunofluorescence localization of β-adrenergic receptors and G-proteins in human A431 cells. Biochem J 263:519–532.

    PubMed  CAS  Google Scholar 

  • Wang HY, Berrios M, Malbon CC (1989) Localization of β-adrenergic receptors in A431 cells in situ: effect of chronic exposure to agonist. Biochem J 263:533–538.

    PubMed  CAS  Google Scholar 

  • Wang HY, Watkins DC, Malbon CC (1992) Antisense oligodeoxynucleotides to Gs protein α-subunit sequence accelerate differentiation of fibroblasts to adipocytes. Nature 358:334–337.

    Article  PubMed  CAS  Google Scholar 

  • Watkins DC, Johnson GL, Malbon CC (1992) Giα2 regulates differentiation of stem cells to primitive endoderm in F9 teratocarcinoma cells. Science (to be published).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hadcock, J.R., Malbon, C.C. (1993). Transcriptional, Posttranscriptional, and Posttranslational Regulation of G-Proteins and Adrenergic Receptors. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics