Skip to main content

Modulation of K+ Channels by G-Proteins

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

  • 94 Accesses

Abstract

The possibility of direct regulation of an ion channel by a G-protein, i.e., as shown in cell-free systems not involving soluble second messengers, and hence of G-protein-gated ion channels, emerged from studies on the mechanism by which muscarinic acetylcholine receptors (mAChR) activate the atrial muscarinic K+ channel that mediates vagal regulation of chronotropy. Ion channels have since then been found that are affected either by Gi (Gi-gated channels), Go (Go-gated channels), or Gs (Gs-gated channels). G-protein-gated K+ channels are physiologically very relevant as modulators of cellular function. Activation of these K+ channels causes cells to hyperpolarize and become less excitable. As a consequence secretion is attenuated in endocrine and nerve cells such as found in sympathetic ganglia (Eccles and Libet 1961; Hartzel et al. 1977), parasympathetic ganglia (Griffith et al. 1981; Hill-Smith and Purves 1978), and the central nervous system (Nakajima et al. 1986; Trautwein and Dudel 1958). In heart they cause a decrease in chronotropy (Trautwein and Dudel 1958; Giles and Noble 1976; reviewed by Hartzell 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Berrie CP, Birdsall NJM, Burgen ASV, Hulme EC (1979) Guanine nucleotides modulate muscarinuc receptor binding in the heart. Biochem Biophys Res Commum 87:1000–1005.

    Article  CAS  Google Scholar 

  • Birnbaumer L (1987) Which G protein subunits are the active mediators in signal transduction. Trends Pharmacol Sci 8:209–211.

    Article  CAS  Google Scholar 

  • Birnbaumer L, Codina J, Mattera R, Yatani A, Graf R, Olate J, Sanford J, Brown AM (1988) Receptor-effector coupling by G proteins. Purification of human erythrocyte Gi-2 and Gi-3 and analysis of effector regulation using recombinant α subunits synthesized in E. coli. Cold Spring Harbor Symp Quant Biol 53:229–239.

    PubMed  CAS  Google Scholar 

  • Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540.

    Article  PubMed  CAS  Google Scholar 

  • Cerbai E, Kloeckner U, Isenberg G (1988) The α subunit of the GTP binding protein activates muscarinic potassium channels of the atrium. Science 240:1782–1784.

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Staniszewski C, Caron MG, Lefkowitz RJ, Codina J, Birnbaumer L (1985) A role for Ni in the hormonal stimulation of adenylate cyclase. Nature 318:293–295.

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Yatani A, Grenet D, Brown AM, Birnbuamer L (1987a) The α subunit of the GTP-binding protein Gk opens atrial potassium channels. Science 236:442–445.

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Grenet D, Yatani A, Birnbaumer L, Brown AM (1987b) Hormonal regulation of pituitary GH3 cell K+ is mediated by its alpha subunit. FEBS Lett 216:104–106.

    Article  PubMed  CAS  Google Scholar 

  • Eccles RM, Libet B (1961) Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J Physiol (Lond) 157:484–503.

    CAS  Google Scholar 

  • Giles W, Noble SJ (1976) Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol (Lond) 261:103–123.

    CAS  Google Scholar 

  • Graf R, Mattera R, Codina J, Evans T, Ho Y-K, Estes MK, Birnbaumer L (1989) Studies on the interaction of α subunits of G proteins with βγ dimers. Eur J Biochem (in press).

    Google Scholar 

  • Griffith WH III, Gallagher JP, Shinnick-Gallagher P (1981) Sucrose-gap recordings of nerve-evoked potentials in mammalian parasympathetic ganglia. Brain Res. 208:446–451.

    Article  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hartzeil HC (1981) Mechanisms of slow postsynaptic potentials. Nature 291:539–544.

    Article  Google Scholar 

  • Hartzeil HC, Kuffler SW, Stickgold R, Yoshikami D (1977) Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurones. J Physiol (Lond) 271:817–846.

    Google Scholar 

  • Hill-Smith I, Purves RD (1978) Synaptic delay in the heart: an ionophoretic study. J Physiol (Lond) 270:31–54.

    Google Scholar 

  • Hsu WH, Xiang H, Rajan AS, Kunze DL, Boyd AE (1991) Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell. J Biol Chem 266:837–843.

    PubMed  CAS  Google Scholar 

  • Ito H, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y (1991) On the mechanism of basal and agonist-induced activation of the G-protein gated musarinic K+ channel in atrial myocytes of guinea pig heart. J Gen Physiol 98:517–533.

    Article  PubMed  CAS  Google Scholar 

  • Katada T, Ui M (1981) Islet-activating protein; a modifier of receptor-mediated regulation of G rat islet adenylate cyclase. J Biol Chem 256:8310–8317.

    PubMed  CAS  Google Scholar 

  • Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE (1989) G protein βγ-subunits activate the cardiac muscarinic K+ channel via phospholipase A2. Nature 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch G, Yatani A, Codina J, Birnbaumer L, Brown AM (1988) The alpha subunit of Gk activates atrial K+ channels of chick, rat and guinea pig. Am J Physiol 254 (Heart Circ Physiol 23): H1200–H1205.

    PubMed  CAS  Google Scholar 

  • Kirsch G, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K+ channels to purinergic receptors by G-proteins in rat ventricular myocytes. Am J Physiol 259:H820–H826.

    PubMed  CAS  Google Scholar 

  • Kobayashi I, Shibasaki H, Tohyama K, Kurachi Y, Itoh H, Ui M, Katada T (1990) Purification and characterization of five different α subunits of guanine nucleotide binding proteins in bovine brain membranes. Their physiological properties concerning the activities of adenylate cyclase and atrial muscarinic K+ channels. Eur J Biochem 191:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y, Ito H, Sugimoto T, Katada T, Ui M (1989a) Activation of atrial muscarinic K+ channels by low concentrations of βγ subunits of rat brain protein. Pflugers Arch 413:325–327.

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y, Ito H, Sugimoto T, Shimizu T, Miki I, Ui M (1989b) Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 337:555–557.

    Article  PubMed  CAS  Google Scholar 

  • Kurose H, Ui M (1883) Functional uncoupling of muscarinic receptors from adenylate Cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin. J Cycl Nucl Protein Phosphoryl Res 9:305–318.

    Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis DE, Kim D, Northup JK, Neer EJ, Clapham DE (1988) Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sci USA 85:5814–5818.

    Article  PubMed  CAS  Google Scholar 

  • Mattera R, Pitts BJR, Entman MS, Birnbaumer L (1985) Guanine nucleotide regulation of a mammalian myocardial receptor system. Evidence for homo-and heterotrophic cooperativity in ligand binding analyzed by computer assisted curve fitting. J Biol Chem 260:7410–7421.

    PubMed  CAS  Google Scholar 

  • Mattera R, Yatani A, Kirsch GE, Graf R, Olate J, Codina J, Brown AM, Birnbaumer L (1988) Recombinant αi-3 subunit of G protein activates Gk-gated K+ channels. J Biol Chem 264:465–471.

    Google Scholar 

  • Murad F, Chi Y-M, Rall TW, Sutherland EW (1962) Adenyl cyclase. III. The effect of catecholamine and choline esters on the formation of adenosine 3′ 5′-phosphate by preparations from cardiac muscle and liver. J Biol Chem 237:1233–1238.

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Nakajima S, Leonard RJ, Yamagucchi K (1986) Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons. Proc Natl Acad Sci USA 83:3022–3026.

    Article  PubMed  CAS  Google Scholar 

  • Nargeot J, Nerbonne JM, Engels J, Lester HA (1983) Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci USA 80:2395–2399.

    Article  PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoll RA (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308:450–452.

    Article  PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K+ channles in cardiac muscle. Nature 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  • Okabe K, Yatani A, Evans T, Ho Y-K, Codina J, Birnbaumer L, Brown AM (1990) βγ Dimers of G proteins inhibit muscarinic K+ channels in heart. J Biol Chem 265:12854–12858.

    PubMed  CAS  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanason NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538.

    Article  PubMed  CAS  Google Scholar 

  • Ribalet B, Ciani S (1987) Regulation by cell metabolism and adenine nucleotides of a K channel in insulin-secreting B cells (RIN m5F). Proc Natl Acad Sci USA 84:1721–1725.

    Article  PubMed  CAS  Google Scholar 

  • Ribalet B, Ciani S, Eddlestone GT (1989) Modulation of ATP-sensitive K channels in RINm5F cells by phosphorylation and G proteins. Biophys J 55:587A..

    Article  Google Scholar 

  • Rosenberger LB, Yamamura HL, Roeske WR (1980) Cardiac muscarinic cholinergic receptor binding is regulated by Na+ and guanyl nucleotides. J Biol Chem 255:820–823.

    PubMed  CAS  Google Scholar 

  • Sasaki K, Sato M (1987) A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature 325:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch 400:424–431.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann RH (1988) Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTPγS on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J Neurosci 8:4589–4602.

    PubMed  CAS  Google Scholar 

  • Trautwein W, Dudel J (1958) Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflugers Arch 266:324–334.

    Article  PubMed  CAS  Google Scholar 

  • Trautwein W, Taniguchi J, Noma A (1982) The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflugers Arch 392:307–314.

    Article  PubMed  CAS  Google Scholar 

  • VanDongen A, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM (1988) Newly identified brain potassium channels gated by the guanine nucleotide binding (G) protein Go. Science 242:1433–1437.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987a) Direct activation of mammalian atrial muscarinic K channels by a human erythrocyte pertussis toxin-sensitive G protein, Gk. Science 235:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Sekura RD, Birnbaumer L, Brown AM (1987b) Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated Gk protein in clonal rat anterior pituitary cell membranes. Mol Endocrinol 1:283–289.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM (1987c) A G protein directly regulates mammalian cardiac calcium channels. Science 238:1288–1292.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Mattera R, Codina J, Graf R, Okabe K, Padrell E, Iyengar R, Brown AM, Birnbaumer L (1988) The G protein-gated atrial K+ channel is stimulated by three distinct Giα-subunits. Nature 336:680–682.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Okabe K, Codina J, Birnbaumer L, Brown AM (1990) Heart rate regulation by G proteins acting on the cardiac pacemaker channel. Science 249:1163–1166.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birnbaumer, L. (1993). Modulation of K+ Channels by G-Proteins. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics