Molecular Beam Epitaxy Systems and Procedures

  • Morton B. Panish
  • Henryk Temkin
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 26)


Until the advent of Gas Source Molecular Beam Epitaxy (GSMBE), a good working description for molecular beam epitaxy was that it was a growth method in which epitaxial layers are grown under high vacuum conditions by causing a thermal flux of atoms or molecules, that constitute the elemental components of the epitaxial layer, to impinge and react upon the heated surface of a single crystal substrate. The substrate surface is the template for epitaxy, therefore its temperature must be high enough that adsorbed atoms or molecules have sufficient mobility to move on the surface until they find appropriate growth sites, but not so high that evaporation or faceting to form low energy surfaces can occur. The MBE system is the aggregate of vacuum system, vacuum pumps, auxiliary analytical equipment, beam sources, sample introduction, manipulation and heating apparatus that make the achievement of these necessary growth conditions possible. These systems can be very similar for ESMBE and the GSMBE methods. In fact, in going from ESMBE to HSMBE the only necessary differences are in the pumping and the group-V beam sources. For this reason the discussion of the MBE apparatus starts in Sect. 4.1 with a description of conventional MBE growth chambers and their auxiliary apparatus.


Epitaxial Layer Reflection High Energy Electron Diffraction Effusion Cell Leak Valve Turbomolecular Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    S. Dushman: In Scientific Foundations of Vacuum Technique, ed. by J.M. Lafferty, 2nd edn. (Wiley, New York 1962) pp. 80–115Google Scholar
  2. 4.2
    M.A. Herman, H. Sitter: Molecular Beam Epitaxy, Springer Ser. Mater. Sci. Vol.7 (Springer, Berlin, Heidelberg 1989) p. 4Google Scholar
  3. 4.3
    L. Pfeiffer, K. West, H.L. Stornier, K.W. Baldwin: Appl. Phys. Lett. 55, 1888 (1990)ADSCrossRefGoogle Scholar
  4. 4.4
    M. B. Panish, H. Temkin, S. Sumski: J. Vac. Sci. Tech. B3, 657 (1985)Google Scholar
  5. 4.5
    M. Hansen: Constitution of Binary Alloys, 2nd edn. (McGraw Hill, New York 1958) p. 133Google Scholar
  6. 4.6
    T.S. Liu, E.A. Peretti: Trans. ASM 44, 539 (1952)Google Scholar
  7. 4.7
    H. Miyazawa, S. Sugaike: J. Phys. Soc., Jpn. 12, 312 (1957)ADSCrossRefGoogle Scholar
  8. 4.8
    R.N. Hall: J. Electrochem Soc. 110, 385 (1963)CrossRefGoogle Scholar
  9. 4.9
    R.A. Hamm, M.B. Panish, R.N. Nottenburg, Y.K. Chen, D.A. Humphrey: Appl. Phys. Lett 54, 2586 (1989)ADSCrossRefGoogle Scholar
  10. 4.10
    S.L. Wright, R.F. Marks, A.E. Goldberg: J. Vac. Sci. Tech. B6, 842 (1988)Google Scholar
  11. 4.11
    IRCON Corp. Technical Note TN106Google Scholar
  12. 4.12
    W.J. Turner, W.E. Reese: Radiative Recombination in Semiconductors (Dunod, Paris 1965) p. 59. Modified with unpublished data by C. D. Thurmond, as reported in Heterostructure Lasers, Vol.2, by H.C. Casey, M.B. Panish (Academic, New York 1978) p.9Google Scholar
  13. 4.13
    A.J. SpringThorpe, T.P. Humphreys, A. Majeed, W.T. Moore: Appl. Phys. Lett. 55, 2138Google Scholar
  14. 4.14
    M.B. Panish: J. Electrochem. Soc. 127, 2729 (1980)CrossRefGoogle Scholar
  15. 4.15
    D. Ritter, M.B. Panish, R.A. Hamm, D. Gershoni, I. Brener: Appl. Phys. Lett. 56,1448 (1990)ADSCrossRefGoogle Scholar
  16. 4.16
    W.T. Tsang: VLSI Electronics Microstructure Science 21, 255 (Academic, New York 1988)Google Scholar
  17. 4.17
    R.N. Nottenburg, H. Temkin, M.B. Panish, R. Bhat, J.C. Bischoff: IEEE EDL-7, 463 (1986)Google Scholar
  18. 4.18
    J.L. Valdes, G. Cadet, J.W. Mitchell: J. Electrochem. Soc. 138, 1654 (1991)CrossRefGoogle Scholar
  19. 4.19
    Electron Transfer Technologies, Inc., P.O. Box 160, Princeton, NJ 08542Google Scholar
  20. 4.20
    Waferpure (TM) purification systems. Copyright 1988, Millipore Corp, Bedford, MAGoogle Scholar
  21. 4.21
    D.N. Buckley, C.W. Seabury, J.L. Valdes, G. Cadet, J.W. Mitchell, M. A. DiGiuseppe, R. C. Smith, J. R. C. Filipe, R.B. Bylsma, U.K. Chakrabarti, K-W. Wang: Appl. Phys. Lett. 57 1684Google Scholar
  22. 4.22
    M.A. DiGiuseppe, H. Temkin, L. Peticolas, W.A. Bonner: Appl. Phys. Lett. 43, 906 (1983)ADSCrossRefGoogle Scholar
  23. 4.23
    R.S. Sillmon, J.A. Freitas, Jr.: Appl. Phys. Lett. 56, 174 (1990)ADSCrossRefGoogle Scholar
  24. 4.24
    R.S. Sillmon: Private communicationGoogle Scholar
  25. 4.25
    Material Safety Data Sheets, Matheson Corp. (1985)Google Scholar
  26. 4.26
    N.V. Steere (ed.): CRC Handbook of Laboratory Safety (Chemical Rubber Co., Cleveland, 1987)Google Scholar
  27. 4.27
    Calgon Carbon Corp., Ventsorb [TM] for Industrial Purification, Bulletin 23–56b, (1986)Google Scholar
  28. 4.28
    B.A. Luxon, V.R. Vaughan, J.V. McManus, G.M. Tom: Mat. Res. Soc. Symp. Proc., 145, 199Google Scholar
  29. 4.29
    Y.L. Wang, H. Temkin, L.R. Harriott, R.A. Hamm, J.S. Weiner: Appl. Phys. Lett. 57, 1672Google Scholar
  30. 4.30
    C.T. Foxon, J.A. Harvey, B.A. Joyce: Phys. Chem. Solids 34 1693 (1973)ADSCrossRefGoogle Scholar
  31. 4.31
    R.F.C. Farrow: J. Phys. D7, L121 (1974)ADSGoogle Scholar
  32. 4.32
    P.J. Dobson, B.A. Joyce, J.H. Neave, J. Zhang: J. Crystal Growth 81, 1 (1987)ADSCrossRefGoogle Scholar
  33. 4.33
    A.Y. Cho: J. Vac. Sci. Tech. 8, S31 (1971)ADSCrossRefGoogle Scholar
  34. 4.34
    J.P. Estrup, E.G. McRae: Surf. Sci. 25, 1 (1972)ADSCrossRefGoogle Scholar
  35. 4.35
    C.B. Duke: Electron scattering by solids: Determination of geometrical, electronic and vibrational structure of surfaces, in Electron Emission Spectroscopy, ed. by W. Dekeyser et al. eds. (Reidel, Dordrecht 1973)Google Scholar
  36. 4.36
    A.Y. Cho: J. Appl. Phys. 41, 2780 (1970)ADSCrossRefGoogle Scholar
  37. 4.37
    A.Y. Cho: J. Appl. Phys. 42, 2074 (1971)ADSCrossRefGoogle Scholar
  38. 4.38
    E.A. Wood: J. Appl. Phys. 35, 1306 (1964)ADSCrossRefGoogle Scholar
  39. 4.39
    J.N. Baillargeon, K.Y. Cheng, K.C. Hsieh: Appl. Phys. Lett. 56, 2201 (1990)ADSCrossRefGoogle Scholar
  40. 4.40
    M.B. Panish: J. Crystal Growth 27, 6 (1974)ADSGoogle Scholar
  41. 4.41
    C.T. Foxon, J.A. Harvey, B.A. Joyce: J. Phys. Chem. Solids, 34, 1693 (1973)ADSCrossRefGoogle Scholar
  42. 4.42
    C.E.C. Wood: GaInAsP Alloy Semiconductors, ed. by T.P. Pearsall (Wiley, New York 1982) p. 87Google Scholar
  43. 4.43
    J.H. Neave, B.A. Joyce, P.J. Dobson, N. Norton: Appl. Phys. A31, 1 (1983)ADSGoogle Scholar
  44. 4.44
    J.H. Neave, B.A. Joyce, P.J. Dobson: Appl. Phys. A34, 179 (1984)ADSGoogle Scholar
  45. 4.45
    W.T. Tsang, T.H. Chiu, J.E. Cunningham, A. Robertson: Appl. Phys. Lett. 50, 1376 (1987)ADSCrossRefGoogle Scholar
  46. 4.46
    Y. Morishita, S. Marano, M. Gotoda, Y. Nomura, H. Ogata: Appl. Phys. Lett. 53, 42 (1988)ADSCrossRefGoogle Scholar
  47. 4.47
    J.H. Neave, P.J. Dobson, B.A. Joyce, Jing Zhang: Appl. Phys. Lett. 47, 2 (1985)CrossRefGoogle Scholar
  48. 4.48
    R. Hamm, D. Ritter, H. Temkin: unpublishedGoogle Scholar
  49. 4.49
    H. Tanaka, M. Mushiage; 6th Int’l. Conf. on MBE, Talk, San Diego (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Morton B. Panish
    • 1
  • Henryk Temkin
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations