Skip to main content

Abstract

Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical or physical agent. Neurotoxic effects may be permanent or reversible, produced by neuropharmacological or neurodegenerative properties of a neurotoxicant, or the result of direct or indirect actions on the nervous system (ICON 1990). Adverse effects include: unwanted side effects, effects due to overdosing, functional or structural compensatory responses to restore normal function; or any alteration from baseline which diminishes the ability to survive, reproduce or adapt to the environment. Some relevant effects can be measured directly by neurochemical, neurophysiological, and neuropathological techniques, whereas others must be inferred from observed behavior. Insults to the nervous system may take various forms and are often quite subtle (Anger 1986). Neurotoxicity may occur at any time in the life cycle from gestation through senescence. The developing nervous system may be particularly vulnerable to damage by certain chemicals, whereas adults may be more susceptible to other agents than the conceptus (Ali et al. 1986a; Ali et al. 1986b; Annau and Eccles 1986; Ecobichon et al. 1990; Lipscomb et al. 1989; Paule et al. 1986; Pearson and Dietrich 1985; Silbergeld 1986; Matthews and Scallet 1991). While the adult nervous system may also be acutely susceptible to new insults, the effects of earlier injuries may be revealed as it ages (Weiss 1990). Psychoactive substances may also indirectly impair health by inducing behaviors that decrease safety in the performance of numerous activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1988) Nature and extent of lead exposure of children in the United States: A report to Congress. Atlanta, GA, U.S. Dept of Health and Human Services, U.S. Public Health Service.

    Google Scholar 

  • Ali SF, Buelke-Sam J, Newport GD, Slikker W Jr (1986a) Early neurobehavioral and neurochemical alterations in rats prenatally exposed to imipramine. Neurotoxicology 7(2): 365–380.

    PubMed  CAS  Google Scholar 

  • Ali, SF, Buelke-Sam J, Slikker, W Jr (1986b) Prenatal reserpine exposure in rats decreases caudate nucleus dopamine receptor binding in female offspring. Toxicol Lett 31: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Ali SF, Newport GD, Slikker W Jr, Bondy SC (1987) Effects of trimethyltin on ornithine decarboxylase in various regions of the mouse brain. Toxicol Lett 36: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Ali SF, Tandon P, Tilson HA, Lipe GW, Newport GD, Slikker W Jr (1990) Intracerebral and oral administration of methylenedioxymethamphetamine (MDMA): distribution and neurochemical alterations in rat brain. Presented at the XIth International Congress of Pharmacology, Amsterdam, July, 1990. Eur J Pharmacol 183: 450.

    Article  Google Scholar 

  • Anderson GM, Braun G, Braun U, Nichols DE, Shulgin AT (1978) In: G Barnett, M Trisc and R Willette (eds) Quasar Research Monograph 22, National Institute on Drug Abuse, Washington, DC, pp 8.

    Google Scholar 

  • Anger WK (1984) Neurobehavioral testing of chemicals: Impact on recommended standards. Neurobehav Toxicol Teratol 6: 147–153.

    PubMed  CAS  Google Scholar 

  • Anger WK (1986) Worker exposures In: Z Annau (ed) Neurobehavioral Toxicology, The Johns Hopkins University Press, Baltimore, pp 331–347.

    Google Scholar 

  • Annau Z, Eccles CU (1986) Prenatal exposure. In: Z Annau (ed) Neurobehavioral Toxicology, The Johns Hopkins University Press, Baltimore, pp 153–169.

    Google Scholar 

  • Barnes DG, Dourson M (1988) Reference dose (RfD): Description and use in health risk assessments. Reg Toxicol Pharmacol 8: 471–486.

    Article  CAS  Google Scholar 

  • Bakhit C, Gibb JW (1981) Methamphetamine-induced depression of tryptophan hydroxylase: recovery following acute treatment. Eur J Pharmacol 76: 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, Yen SY, Desouza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29: 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Buelke-Sam J, Ali SF, Kimmel GL, Slikker W Jr, Newport GD (1989) Postnatal function following prenatal reserpine exposure in rats. Neurobehavioral toxicity. Neurotoxicol Teratol 11: 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Chang LW, Tiemeyer TM, Wenger GR, McMillan DE (1982) Neuropathology of mouse hippocampus in acute trimethyltin intoxication. Neurobehav Toxicol Teratol 4: 149–156.

    PubMed  CAS  Google Scholar 

  • Committee on Biological Markers of the National Research Council (1987) Biological markers in environmental health research. Environ Health Perspect 74: 3–9.

    Google Scholar 

  • Ecobichon D Davies JE, Doull J, Ehrich M, Joy R, McMillan D, Macphall R, Reiter LW, Slikker W, Jr, Tilson H (1990) The effect of pesticides on human health. In: S Baker and C Wilkinson (eds) Advances in Modern Environmental Toxicology, Vol XVIII, Princeton Scientific Publishing Co, Inc, pp 131-199.

    Google Scholar 

  • Food and Drug Administration Advisory Committee on Protocols for Safety Evaluation (1971) Panel on carcinogenesis. Report on cancer testing in the safety evaulation of food additives and pesticides. Toxicol Appl Pharmacol 20: 419–438.

    Article  Google Scholar 

  • Gaylor DW, Slikker W Jr (1990) Risk assessment for neurotoxic effects. Neurotoxicology 11: 211–218.

    PubMed  CAS  Google Scholar 

  • Gaylor DW, Chen JJ, Sheehan DM (1990) Uncertainty in cancer risk estimates. Risk Analysis (submitted).

    Google Scholar 

  • Gollamudi R, Ali SF, Lipe G, Newport G, Webb P, Lopez M, Leakey JEA, Kolta M, Slikker W, Jr (1989) Influences of inducers and inhibitors on the metabolism in vitro and neurochemical effects in vivo of MDMA. Neurotoxicology 10: 455–466.

    PubMed  CAS  Google Scholar 

  • ICON, Interagency Committee on Neurotoxicity, Personal communication (1990).

    Google Scholar 

  • Johnson BL (1980) Electrophysiological methods. In: P Spencer and H Schaumburg (eds) Neurotoxicity Testing in Experimental and Clinical Neurotoxicology, Williams and Wilkins, pp 726-742.

    Google Scholar 

  • Kopkin IJ, Markey SP (1988) MPTP toxicity: Implications for research in Parkinson’s disease. Ann Rev Neurosci 11: 91–96.

    Google Scholar 

  • Levine MS, Fox NL, Thompson B, Taylor W, Darlington, AC, Van Der Hoeden J, Emmett EA, Rutten W (1986) Inhibition of esterase activity and an undercounting of circulating monocytes in a population of production workers. J Occup Med 28: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Lim HK, Foltz RL (1988) In vivo and in vitro metabolism of 3,4-(methylenedioxy) methamphetamine in the rat: identification of metabolites using an ion trap detector. Chem Res Toxicol 1: 370–378.

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb JC, Paule MG, Slikker W Jr (1989) The disposition of 14C-trimethyltin in the pregnant rat and fetus. Neurotox Teratol 11: 185–191.

    Article  CAS  Google Scholar 

  • Matthews JC, Scallet AC (1991) Nutrition, neurotoxicants, and age-related neurodegeneration. Neurotoxicology 12: 547–558.

    PubMed  CAS  Google Scholar 

  • Mclntire MS, Angle CR (1972) Air lead: relation to lead in blood of black school children deficient in glucose-6-phosphate dehydrogenase. Science 177: 520–521.

    Article  Google Scholar 

  • McMillan DE (1987) Risk assessment for neurobehavioral toxicity. Environ Health Perspect 76: 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Molliver ME, O’Hearn E, Battaglia G, DeSouza EB (1986) Direct intracerebral administration of MDA and MDMA does not produce serotonin neurotoxicity. Soc Neurosci Abs 12: 3363.

    Google Scholar 

  • National Research Council (1983) Risk assessment in the Federal Government: managing the process. Washington, DC, National Academy Press.

    Google Scholar 

  • Needleman HL (1987) Introduction: Biomarkers in neurodevelopmental toxicology. Environ Health Perspect 74: 149–152.

    Article  PubMed  CAS  Google Scholar 

  • OTA, (Office of Technology Assessment) U.S. Congress (1990) Neurotoxicity: identifying and controlling poisons of the nervous system. OTA-BA-436 Washington, DC, U.S. Government Printing Office (April 1990).

    Google Scholar 

  • OTA (Office of Technology Assessment) (1984) Impact of neuroscience: A background paper. OTA-BP-BA-24 Washington, DC, U.S. Government Printing Office.

    Google Scholar 

  • O’Callaghan JP (1991) Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci: in press.

    Google Scholar 

  • Paule MG, Reuhl K, Chen JJ, Ali SF, Slikker W Jr (1986) Developmental toxicology of trimethyltin in the rat. J Toxicol Appl Pharmacol 84(2): 412–417.

    Article  CAS  Google Scholar 

  • Paule MG, Cranmer JM, Wilkins JD, Stern HP, Hoffinan EL (1988a) Quantitation of complex brain function in children: Preliminary evaluation using a nonhuman primate behavioral test battery. Neurotoxicology 9(3): 367–378.

    PubMed  CAS  Google Scholar 

  • Paule MG, Schulze GE, Slikker W Jr (1988b) Complex brain function in monkeys as a baseline for studying the effects of exogenous compounds. Neurotoxicology 9: 463–470.

    PubMed  CAS  Google Scholar 

  • Pearson DT, Dietrich KN (1985) The behavioral toxicology and teratology of childhood: Models, methods and implications for intervention. Neurotoxicology 6(3): 165–182.

    PubMed  CAS  Google Scholar 

  • Ricaurte GA, Delanney LE, Weiner SG, Irwin, Langsten JW (1988) 5-Hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates. Brain Res 474: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Rogan WJ, Reigart Jr, Gladen BC (1986) Association of amino levulinate dehydratase and ferrochelatase inhibition in childhood lead exposure. J Pediatr 109: 60–64.

    Article  PubMed  CAS  Google Scholar 

  • Scallet AC, Lipe GW, Ali SF, Holson RR, Frith CH, Slikker W Jr (1988) Neuropathological evaluation by combined immunohistochemistry and degeneration-specific methods: application to methylenedioxymethamphetamine. Neurotoxicology 9: 529–538.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Levin JA, Lovenberg W (1987) In vitro and in vivo neurochemical effects of methylenedioxymethamphetamine on striatal monoaminergic systems in the rat brain. Biochem Pharmacol 36(5): 747–755.

    Article  PubMed  CAS  Google Scholar 

  • Schulze GE, McMillian DE, Bailey Jr, Scallet AC, Ali SF, Slikker W Jr, Paule MG (1988) Acute effects of delta-9-tetrahydrocannabinol (THC) in rhesus monkeys as measured by performance in a battery of cognitive function tests. J Pharmacol Exp Ther 245: 178–186.

    PubMed  CAS  Google Scholar 

  • Schulze GE, Slikker W Jr, Paule MG (1989) Multiple behavioral effects of diazepam in rhesus monkeys. Pharmacol Biochem Behav 34: 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Sheehan DM, Young JF, Slikker W Jr, Gaylor DW, Mattison DR (1989) Workshop on risk assessment in reproductive and developmental toxicology: addressing the assumptions and identifying the research needs. Reg Toxicol Pharmacol 10: 110–122.

    Article  CAS  Google Scholar 

  • Silbergeld, EK (1986) Maternally mediated exposure of the fetus: In utero exposure to lead and other toxins. Neurotoxicology 7: 557–56.

    PubMed  CAS  Google Scholar 

  • Slikker W Jr, Ali SF, Scallet AC, Frith CH, Newport GD, Bailey Jr, (1988) Neurochemical and neurohistological alterations in the rat and monkey produced by orally administered methylenedioxymethamphetamine (MDMA). Toxicol Appl Pharmacol 94: 448–457.

    Article  PubMed  CAS  Google Scholar 

  • Slikker W, Jr, Holson RR, Ali SF, Kolta MG, Paule MG, Scallet AC, McMillan DE, Bailey Jr, Hong JS, Scalzo FM (1989) Behavioral and neurochemical effects of orally administered MDMA in the rodent and nonhuman primate. Neurotoxicology 10: 529–542.

    PubMed  CAS  Google Scholar 

  • Slikker W Jr, Paule MG (1985) Symposium overview: developmental neuropharmacology/neurotoxicology. Proc West Pharmacol Soc 28: 309–310.

    PubMed  Google Scholar 

  • Slikker W Jr, Gaylor DW (1990) Biologically-based dose-response model for neurotoxicity risk assessment. Korean J Toxicol 6: 205–213.

    CAS  Google Scholar 

  • Slikker W Jr (1991) Biomarkers of neurotoxicity: an overview. Biomed Environ Sci 4: 192–196.

    PubMed  Google Scholar 

  • Slotkin TA, Pachman S, Kavlock, RJ, Bartlome J (1985) Early biochemical detection of adverse effects of a neurobehavioral teratogen: influence of prenatal methylmercury exposure on ornithine decarboxylase in brain and other tissues of fetal and neonatal rat. Teratology 32: 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Spear LP, Kirstein CL, Bell J, Yoottanssumpun V, Green Baum, R, O’Shea J, Hoffmann H, Spear NE (1989) Effects of prenatal cocaine exposure on behavior during the early postnatal period. Neurotoxicol Teratol 11: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Stahl DC, Hanson GR, Gibb JW (1986) The effects of 3,4-methylenedioxy-methamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • The Scientist (1990) Neurotoxicologists call for more research, Regulation P. 5, February 5, 1990 U.S. EPA (Environmental Protection Agency) (1986) Air quality criteria for leads. Vols. I–IV (Document No. EPA-600/8/028aF). Research Triangle Park, NC

    Google Scholar 

  • Weiss B (1990) Risk assessment: the insidious nature of neurotoxicity and the aging brain. Neurotoxicology 11: 305–323.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scallet, A.C., Slikker, W. (1992). Biomarkers of Developmental Neurotoxicity. In: Neubert, D., Kavlock, R.J., Merker, HJ., Klein, J. (eds) Risk Assessment of Prenatally-Induced Adverse Health Effects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77753-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77753-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77755-4

  • Online ISBN: 978-3-642-77753-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics