Skip to main content

Abstract

Tremendous progress has been made since the pioneering, but long overlooked, observation of Burrows [5] in 1912 that single beating heart cells migrated away from embryonic chick heart isolated tissue expiants. Burrows suggested that his finding supported the myogenic theory for cardiac beating activity. Several decades passed before the realization that isolated systems, such as cells in culture, might serve aas useful tools for studying biological systems began to take hold. For this reason, although tryptic dissociation, reported by Rous and Jones [68] in 1916, and Carrel’s method for subculturing cells [6] from 1912 have been available for many years, science had to wait until the 1950s for these techniques to be revived by Moscona [56], who isolated cells from embryonic tissues by proteolytic digestion. He also determined which essential materials, cofactors, and vitamins were required to successfully maintain cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasia JV, McCarl RL (1973) Effects of cortisol on cultured rat heart cells. Lipase activity, fatty acid oxidation, glycogen metabolism and ATP levels as related to the beating phenomenon. J Cell Biol 57:109–116.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes D, Sato G (1980) Serum-free culture: a unifying approach. Cell 22:649–695.

    Article  PubMed  CAS  Google Scholar 

  3. Blondel B, Roijen I, Cheneval JP (1971) Heart cells in culture: a simple method for increasing the proportion of myoblasts. Experientia 27:356–358.

    Article  PubMed  CAS  Google Scholar 

  4. Bottenstein J, Hayashi I, Hutchings S, Masui H, Mather J, McClure OB, Ohasa S, Rizzino A, Sato G, Serrero G, Wolfe R, Wu R (1979) The growth of cells in serum-free hormone supplemented media. Methods Enzymol 58:94–109.

    Article  PubMed  CAS  Google Scholar 

  5. Burrows MT (1912) Rhythmical activity of isolated heart muscle cells in vitro. Science 3:90–92.

    Article  Google Scholar 

  6. Carrel A, Burrows MT (1910) Culture de tissus adultes en dehors de l’organisme. CR Soc Biol (Paris) 69:293-294.

    Google Scholar 

  7. Cavanaugh DJ, Berndt WO, Smith TE (1963) Dissociation of heart cells by collagenase. Nature 200:261–262.

    Article  PubMed  CAS  Google Scholar 

  8. Cavanough MW (1955) Pulsation migration and division in dissociated chick heart cells in vitro. J Exp Zool 128:573–589.

    Article  Google Scholar 

  9. Chacko S (1972) The effect of BUdR on the emergence of cardiac muscle cells in the developing embryo (Abstr). J Cell Biol 55:36 A.

    Google Scholar 

  10. Clark WAR, Fischmann DA (1983) Analysis of population cytokinetics of chick myocardial cells in tissue culture. Dev Biol 97:1–9.

    Article  PubMed  Google Scholar 

  11. Claycomb WC (1980) Culture of cardiac muscle cells in serum-free medium. Exp Cell Res 131:231–236.

    Article  Google Scholar 

  12. Fange R, Persson H, Hesleff T (1956) Electrophysiologic and pharmacologic observations on trypsin disintegrated embryonic chick hearts cultured in vitro. Acta Physiol Scand 38:173–183.

    Article  PubMed  CAS  Google Scholar 

  13. Fenselau A, Mello RJ (1976) Growth stimulation of cultured endothelial cells by tumor cell homogenates. Cancer Res 36:3269–3273.

    PubMed  CAS  Google Scholar 

  14. Fischmann DA, Moscona AS (1971) Reconstitution of heart tissue from suspensions of embryonic myocardial cells: ultrastructural studies on dispersed and reaggregated cells. In: Alpert NR (ed) Cardiac hypertrophy. Academic, New York, pp 125–139.

    Google Scholar 

  15. Florini JR, Ewton DZ (1981) Insulin acts as a somatomedin analog in simulating myoblast growth in serum-free medium. In Vitro 17:763–768.

    Article  PubMed  CAS  Google Scholar 

  16. Freiin C (1978) The growth of heart cells in culture. Evidence for a multiple activation of the pleiotypic program. Biochimie60:627–638.

    Article  Google Scholar 

  17. Freiin C (1980) The regulation of protein turnover in newborn rat heart cell cultures. J Biol Chem 255:11149–11155.

    Google Scholar 

  18. Frelin C, Padieu P (1976) Pleiotypic response of rat heart cells in culture to serum stimulation. Biochimie 58:953–959.

    Article  PubMed  CAS  Google Scholar 

  19. Girardi AJ, Warren J, Goldman C, Jeffries B (1958) Growth and CF antigenicity of measles virus in cells deriving from human heart. Proc Soc Exp Biol Med 98:18–22.

    PubMed  CAS  Google Scholar 

  20. Gordon HP, Brice MC (1974) Intrinsic factors influencing the maintenance of contractile embryonic heart cells in vitro. I. The heart muscle conditioned medium effect. Exp Cell Res 85:303–310.

    Article  PubMed  CAS  Google Scholar 

  21. Gordon HP, Brice MC (1974) Intrinsic factors influencing the maintenance of contractile embryonic heart cells in vitro. II. Biochemical analysis of heart muscle conditioned medium. Exp Cell Res 85:311–318.

    Article  PubMed  CAS  Google Scholar 

  22. Goshima K (1976) Arrythmic movements of myocardial cells in culture and their improvement with antiarrhythmic drugs. J Mol Cell Cardiol 8:217–238.

    Article  PubMed  CAS  Google Scholar 

  23. Gospodarowisz D (1979) Fibroblasts and epidermal growth factors: their uses in vivo and in vitro in studies on cell function and cell transplantation. Mol Cell Biochem 25:79–110.

    Google Scholar 

  24. Grill WE, Rumery RE, Woodbury JW (1959) Effects of membrane current on transmembrane potentials of cultured chick embryo heart cells. Am J Physiol 197:733–735.

    Google Scholar 

  25. Gross WO, Müller CAM, Schlotman EHM (1977) Loss of differentiation features in trypsin separated heart muscle cells. Anat Embryol (Berl) 151:341–350.

    Article  CAS  Google Scholar 

  26. Hale W, Wollenberger A (1970) Differentiation and behavior of isolated embryonic and neonatal heart cells in a chemically defined medium. Am J Cardiol 25:292–299.

    Article  Google Scholar 

  27. Ham RG, McKeehan WL (1979) Media and growth requirements. Methods Enzymol 58:44–93.

    Article  PubMed  CAS  Google Scholar 

  28. Harary I, Farley B (1960) In vitro studies of isolated beating heart cells. Science 131:1674–1675.

    Article  PubMed  CAS  Google Scholar 

  29. Harary I, Farley B (1960) In vitro studies on single beating rat heart cells into beating fibers. Science 132:1839–1840.

    Article  PubMed  CAS  Google Scholar 

  30. Harary I, McCarl R, Farley B (1966) Studies in vitro on single beating rat heart cells. XI. The restoration of beating by serum lipids and fatty acids. Biochim Biophys Acta 115:15–22.

    Article  PubMed  CAS  Google Scholar 

  31. Harary I, Hoover F, Farley B (1974) The isolation and cultivation of rat heart cells. Enzymol 32:740–745.

    Article  CAS  Google Scholar 

  32. Harary I, Renaud J-F, Wallace G (1976) Ca ions regulate cyclic AMP and beating in cultured heart cells. Nature 261:60–61.

    Article  PubMed  CAS  Google Scholar 

  33. Holtzer H (1979) Myogenesis. In: Schjeide QA, de Vellis I (eds) Cell differentiation. Van Nostrand Reinhold, New York, pp 476–503.

    Google Scholar 

  34. Houba V (1967) The use of pronase for dispersing cells. Experientia 23:572.

    Article  PubMed  CAS  Google Scholar 

  35. Kaneko H, Goshima K (1982) Selective killing of Fibroblast like cells in cultures of mouse heart cells by treatment with CA ionophore A 23187. Exp Cell Res 142:407–416.

    Article  PubMed  CAS  Google Scholar 

  36. Kasten FH (1966) Electron microscope studies of the combined effects of trypsinization and centrifugation on rat heart cells (Abstr). J Cell Biol 31:131 A.

    Google Scholar 

  37. Kasten FH (1972) Rat myocardial cells in vitro: mitosis and differentiated properties. In Vitro 8:128–150.

    Article  PubMed  CAS  Google Scholar 

  38. Kasten FH, Yip DK (1974) Reamination of cultured mammalian myocardial cells during multiple cycles of trypsinization freezing-thawing. In Vitro 9:246–252.

    Article  Google Scholar 

  39. Kessler-Icekson G (1987) Cardiomyocytes grown in serum-free medium. In: Pinson A (ed) The heart cell in culture. CRC, Boca Raton, pp 23–28.

    Google Scholar 

  40. Kessler-Icekson G, Wasserman L, Yoles E, Aampson SR (1983) Characterization of cardiomyocytes cultured in serum-free medium. In: Fischer G, Weiser RJ (eds) Hormonally defined media. A tool in cell biology. Springer, Berlin Heidelberg New York, p 383.

    Chapter  Google Scholar 

  41. Kessler-Icekson G, Sperling O, Rotem C, Wasserman L (1984) Cardiomyocytes cultured in serum-free medium; growth and creatine kinase activity. Exp Cell Res 155:113–120.

    Article  PubMed  CAS  Google Scholar 

  42. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381.

    Article  PubMed  CAS  Google Scholar 

  43. Kono I (1969) Roles of collagenases and other proteolytic enzymes in the dispersal of animal tissues. Biochim Biophys Acta 178:397–400.

    PubMed  CAS  Google Scholar 

  44. Lehmkuhl D, Sperelakis N (1963) Transmembrane potentials of trypsin dispersed chick heart cells cultured in vitro. Am J Physiol 205:1213–1220.

    PubMed  CAS  Google Scholar 

  45. Levinson C, Green JW (1965) Cellular injury resulting from tissue disaggregation. Exp Cell Res 39:309–317.

    Article  PubMed  CAS  Google Scholar 

  46. Lieberman I, Ove J (1959) Growth factors for mammalian cells in culture. J Biol Chem 234:2754–2758.

    PubMed  CAS  Google Scholar 

  47. Mark G, Strasser FF (1966) Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp Cell Res 44:217–233.

    Article  PubMed  CAS  Google Scholar 

  48. Masse MJO, Harary I (1974) Role of cell division in the cytodifferentiation of rat heart cells in culture. Biochimie 56:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  49. Masse MJO, Harary I (1981) The use of 5-bromodeoxyuridine and irradiation for the estimation of the myoblast and myocyte content of primary rat heart cell cultures. J Cell Physiol 105:194–202.

    Google Scholar 

  50. Masse MJO, Harary I (1981) The use of fluorescent antimyosin and DNA labelling in the estimation of the myoblast and myocyte population of primary rat heart cell cultures. J Cell Physiol 106:165–172.

    Article  PubMed  CAS  Google Scholar 

  51. Masson-Pévet M, Jongsma HJ, de Bruijne J (1976) Collagenase and trypsin-dissociated heart cells: a comparative ultrastructural study. J Mol Cell Cardiol 8:747-757.

    Google Scholar 

  52. McCarl RL, Margossian SS (1969) Restoration of beating and enzymatic response of cultured rat heart cells to cortisol acetate. Arch Biochem Biophys 130:321–325.

    Article  PubMed  CAS  Google Scholar 

  53. McDonagh JC, Cebrta EK, Nathan RD (1987) Highly enriched preparations of cultured myocardial cells for biochemical and physiological analysis. J Mol Cell Cardiol 19:785–793.

    Article  PubMed  CAS  Google Scholar 

  54. Mersel M, Hietter H, Luu B (1987) Differential sensitivity of heart fibroblasts and myocytes to 17-β-hydroxycholesterol. In: Pinson A (ed) The heart cell in culture, vol 3. CRC, Boca Raton, pp 125–132.

    Google Scholar 

  55. Mohamed SNW, Holmes R, Hartzeil CR (1983) A serum-free chemically defined mediurn for function and growth of primary neonatal rat heart cell cultures. In Vitro 19:471–478.

    Article  PubMed  CAS  Google Scholar 

  56. Moscona A (1952) Cell suspension from organ rudiments of chick embryos. Exp Cell Res 3:535–539.

    Article  CAS  Google Scholar 

  57. Nag AC, Cheng M (1984) Expression in cardiac myosin isozymes in cardiac muscle cells in culture. Biochem J 221:21–26.

    PubMed  CAS  Google Scholar 

  58. Padieu P, Frelin C, Pinson A, Charbonné F, Athias P (1978) Effect of environmental factors and tissue culture methodology in producing and studying cultured cardiac cells. Recent Adv Stud Cardiac Struct Metab 12:609–620.

    CAS  Google Scholar 

  59. Pfeiffer DR, Taylor RW, Lardy HA (1978) Ionophore A23187: cation binding and transport properties. Ann NY Acad Sci 307:402–423.

    Article  CAS  Google Scholar 

  60. Pine L, Taylor GC, Miller DM, Bradley G, Wetmore HR (1969) Comparison of good and bad lots of trypsin used in the production of primary monkey kidney cells: a definition of the problem and comparison of certain enzymatic characteristics. Cytobios 2:197–207.

    Google Scholar 

  61. Pinson A, Padieu P (1974) Erucic acid oxidation by beating heart cells in culture. FEBS Lett 39:88–90.

    Article  PubMed  CAS  Google Scholar 

  62. Pinson A, Frelin C, Padieu P (1977) Palmitate oxidation by beating heart cells in culture. Recent Adv Stud Cardiac Struct Metab 12:667–676.

    Google Scholar 

  63. Pinson A, Degrès J, Heller M (1979) Partial and incomplete oxidation of palmitate by cultured beating cardiac cells from neonatal rats. J Biol Chem 254:8331–8335.

    PubMed  CAS  Google Scholar 

  64. Pinson A, Padieu P, Harary I (1987) Techniques for culturing heart cells. In: Pinson A (ed) The heart cell in culture, vol 1. CRC, Boca Raton, pp 7–22.

    Google Scholar 

  65. Piper HM, Probst I, Schwartz P, Hutter FJ, Spiekermann PG (1982) Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol 14:397–412.

    Article  PubMed  CAS  Google Scholar 

  66. Polinger IS (1970) Separation of cell types in embryonic heart cell culture. Exp Cell Res 63:78–82.

    Article  PubMed  CAS  Google Scholar 

  67. Rinaldini LM (1959) An improved method for the isolation and quantitative cultivation of embryonic cells. Exp Cell Res 16:477–505.

    Article  PubMed  CAS  Google Scholar 

  68. Rous P, Jones FS (1916) A method for obtaining suspensions of living cells from fixed tissues and for plating individual cells. J Exp Med 23:549–555.

    Article  PubMed  CAS  Google Scholar 

  69. Simpson P, McGrath A, Savion S (1982) Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and catecholamines. Circ Res 51:787–801.

    PubMed  CAS  Google Scholar 

  70. Smith TE, Berndt WO (1964) The establishment of beating myocardial cells in long-term culture in fluid medium. Exp Cell Res 36:179–199.

    Article  PubMed  Google Scholar 

  71. Speicher DW, McCarl RL (1974) Pancreatic enzyme requirements for the dissociation of rat hearts for culture. In Vitro 10:30–41.

    Article  PubMed  CAS  Google Scholar 

  72. Speicher DW, McCarl RL (1978) Isolation and characterization of the proteolytic enzyme component from commercially available crude trypsin. Anal Biochem 84:205–217.

    Article  PubMed  CAS  Google Scholar 

  73. Speicher DW, McCarl RL (1978) Evaluation of a proteolytic enzyme mixture isolated from crude trypsins in tissue disaggregation. In Vitro 14:849–853.

    Article  PubMed  CAS  Google Scholar 

  74. Speicher DW, Peace JN, McCarl RL (1981) Effects of plating density and in culture on growth and cell division of neonatal rat heart primary cultures. In Vitro 17:863–870.

    Article  PubMed  CAS  Google Scholar 

  75. Uusimaa PA, Hiltunnen JK, Sormunen RT, Hassinen IEV (1988) Microcarrier culture of neonatal cardiac myocytes in metabolic studies. Cardiovasc Res 22:291–295.

    Article  PubMed  CAS  Google Scholar 

  76. Weinstein D (1966) Comparison of pronase and trypsin for detachment of human cells during serial cultivation. Exp Cell Res 43:234–236.

    Article  PubMed  CAS  Google Scholar 

  77. Wollenberger A (1964) Rhythmic and arrhythmic contractile activity of single myocardial cells cultured in vitro. Circ Res [Suppl 2] 15:184–201.

    CAS  Google Scholar 

  78. Wollenberger A, Halle W (1963) Einfluß von Reserpin und Dichloroisoproterenol auf die durch Adrenalin und Digitoxin hervorgerufenen Wirkungen an Kulturen spontan schlagender isolierter Zellen des embryonalen Hühnerherzens. Monatsber Dtsch Akad Wiss Berlin 5:38.

    CAS  Google Scholar 

  79. Yagev S, Heller M, Pinson A (1984) Changes in cytoplasmic and lysosomal enzyme activities in cultured rat heart cells: the relationship to cell differentiation and cell population in culture. In Vitro 20:893–898.

    Article  PubMed  CAS  Google Scholar 

  80. Yasumura Y, Tashjian AH Jr, Sato G (1966) Establishment of four functional clonal strains of animal cells in culture. Science 154:1186–1189.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinson, A. (1990). Neonatal Rat Heart Muscle Cells. In: Piper, H.M. (eds) Cell Culture Techniques in Heart and Vessel Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75262-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75262-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75264-3

  • Online ISBN: 978-3-642-75262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics