Skip to main content

Abstract

Cultures of animal aortic cells have found wide application in the investigation of cellular aspects of atherogenesis. However, culture of human aortic cells is a more adequate model since atherosclerotic lesions occurring in human vessels differ from those induced in experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61.

    PubMed  CAS  Google Scholar 

  2. Gimbrone MA, Cotran RS (1975) Human vascular smooth muscle in culture. Growth and ultrastructure. Lab Invest 33:16–27.

    PubMed  Google Scholar 

  3. May JF, Paule WJ, Rounds DE, Blankenborn DH, Zemplenyi T (1975) The induction of atherosclerotic plaque-like mounds in cultures of aortic smooth muscle cells. Virchows Arch[B] 18:205–211.

    CAS  Google Scholar 

  4. Ronnemaa T, Jarvelainen H, Lehtonen A, Tammi M, Larjava H, Saarni H, Vihersaari T, Viikari J (1980) Serum lipoprotein composition, hormones, and the synthesis of glycosaminoglycans by human aortic smooth muscle cells. Artery 8:323–328.

    PubMed  CAS  Google Scholar 

  5. Thyberg J, Nilsson J, Palmberg L, Sjolund M (1985) Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res 239:69–74.

    Article  PubMed  CAS  Google Scholar 

  6. Orekhov AN, Andreeva ER, Tertov VV (1987) The distribution of cells and chemical components in the intima of human aorta. In: Chazov EI, Smirnov VN (eds) Human atherosclerosis. Harwood, Chur, pp 75–100 (Soviet medical reviews, sect A: Cardiology reviews, vol 1).

    Google Scholar 

  7. Geer JC, Haust MD (1972) Smooth muscle cells in atherosclerosis. Karger, Basel.

    Google Scholar 

  8. Gross L, Epstein EZ, Kugel MA (1980) Histology of the coronary arteries and their branches in the human heart. Am J Pathol 10:253–274.

    Google Scholar 

  9. Movat HZ, More RH, Haust MD (1958) The diffuse intimai thickening of the human aorta with aging. Am J Pathol 24:1023–1031.

    Google Scholar 

  10. Brattain MG (1979) Tissue disaggregation. In: Melamed MR, Mullaney PF, Mendelson MI (eds) Flow cytometry and sorting. Wiley, New York, pp 193–205.

    Google Scholar 

  11. Orekhov AN, Karpova II, Tertov VV, Rudchenko SA, Andreeva ER, Krushinsky AV, Smirnov VN (1984) Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light-microscopic study of dissociated aortic cells. Am J Pathol 115:17–24.

    PubMed  CAS  Google Scholar 

  12. Orekhov AN, Andreeva ER, Tertov VV, Krushinsky AV (1984) Dissociated cells from different layers of adult human aortic wall. Acta Anat (Basel) 119:99–105.

    Article  CAS  Google Scholar 

  13. Orekhov AN, Andreeva ER, Krushinsky AV, Smirnov VN (1984) Primary cultures of enzyme-isolated cells from normal and atherosclerotic human aorta. Med Biol 62:255–259.

    PubMed  CAS  Google Scholar 

  14. Orekhov AN, Krushinsky AV, Andreeva ER, Repin VS, Smirnov VN (1986) Adult human aortic cells in primary culture: heterogeneity in shape. Heart Vessels 2(4): 193–201.

    Article  PubMed  CAS  Google Scholar 

  15. Hofman W, Goeger D (1977) Immunofluorescence in the identification of differentiating arterial smooth muscle cells in culture. Prog Biochem Pharmacol 13:52–54.

    Google Scholar 

  16. Krushinsky AV, Orekhov AN (1982) Morphological analysis of cells isolated from the intima and media of human aorta. In: Chazov EI, Smirnov VN (eds) Vessel wall in athero-and thrombogenesis: studies in the USSR. Springer, Berlin Heidelberg New York, pp 41–51.

    Chapter  Google Scholar 

  17. Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50:172–186.

    Article  PubMed  CAS  Google Scholar 

  18. Ross R, Glomset J (1973) Atherosclerosis and arterial smooth muscle cell. Science 180:1332–1339.

    Article  PubMed  CAS  Google Scholar 

  19. Smith EB (1974) The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res 12:1–49.

    PubMed  CAS  Google Scholar 

  20. Orekhov AN, Kosykh VA, Repin VS, Smirnov VN (1983) Cell proliferation in normal and atherosclerotic human aorta. II. Autoradiographic observation on deoxyribonucleic acid synthesis in primary cell culture. Lab Invest 48(6): 749–754.

    PubMed  CAS  Google Scholar 

  21. Orekhov AN, Tertov VV, Kudryashov SA, Khashimov KA, Smirnov VN (1986) Primary culture of human aortic intima cells as a model for testing antiatherosclerotic drugs. Effects of cyclic AMP, Prostaglandins, calcium antagonists, antioxidants, and lipid-lowering agents. Atherosclerosis 60(2): 101–110.

    Article  PubMed  CAS  Google Scholar 

  22. Orekhov AN, Tertov VV, Novikov ID, Krushinsky AV, Andreeva ER, Lankin VZ, Smirnov VN (1985) Lipids in cells of atherosclerotic and uninvolved human aorta. I. Lipid composition of aortic tissue and enzyme isolated and cultured cells. Exp Mol Pathol 42(1): 117–137.

    Article  PubMed  CAS  Google Scholar 

  23. Tertov VV, Orekhov AN, Repin VS, Smirnov VN (1982) Dibutyryl cyclic AMP decrease proliferative activity and the cholesteryl ester content in cultured cells of atherosclerotic human aorta. Biochem Biophys Res Commun 109(4): 1228–1233.

    Article  PubMed  CAS  Google Scholar 

  24. Orekhov AN, Tertov VV, Smirnov VN (1983) Prostacyclin analogues as antiatherosclerotic drugs. Lancet 2(8348): 521.

    Article  PubMed  CAS  Google Scholar 

  25. Kudryashov SA, Tertov VV, Orekhov AN, Geling NG, Smirnov VN (1984) Regression of atherosclerotic manifestations in primary culture of human aortic cells: effects of Prostaglandins. Biomed Biochim Acta 43(8/9):S284–S286.

    PubMed  CAS  Google Scholar 

  26. Orekhov AN, Misherin AY, Tertov VV, Khashimov KA, Pokrovsky SN, Repin VS; Smirnov VN (1984) Artificial HDL as an antiatherosclerotic drug. Lancet 2(8412): 1149-1150.

    Google Scholar 

  27. Tertov VV, Orekhov AN, Smirnov VN (1986) Agents that increase cellular cyclic AMP inhibit proliferative activity and decrease lipid content in cells cultured from atherosclerotic human aorta. Artery 13(6): 365–372.

    PubMed  CAS  Google Scholar 

  28. Orekhov AN, Tertov VV, Mazurov AV, Andreeva ER, Repin VS; Smirnov VN (1986) “Regression” of atherosclerosis in cell culture: effects of stable prostacyclin analogues. Drug Dev Res 9(3): 189-201.

    Google Scholar 

  29. Giessler C, Fahr A, Tertov VV, Kudryashov SA; Orekhov AN, Smirnov VN, Mest H-J (1987) Trapidil derivatives as potential antiatherosclerotic drugs. Arzneimittelforschung 37-I(5):538–541.

    Google Scholar 

  30. Akopov SE, Orekhov AN, Tertov VV, Khashimov KA, Gabrielyan ES, Smirnov VN (1988) Stable analogues of prostacyclin and thromboxane A2 display contradictory influences on atherosclerotic properties of cells cultured from human aorta. The effect of calcium antagonists. Atherosclerosis 72(2/3): 245–248.

    Article  PubMed  CAS  Google Scholar 

  31. Tertov VV, Panosyan AG, Akopov SE, Orekhov AN (1988) The effects of eicozanoids and lipoxygenase inhibitors on the lipid metabolism of aortic cells. Biomed Biochim Acta 47(10/11):S286–S288.

    PubMed  CAS  Google Scholar 

  32. Baldenkov GN, Akopov SE, Li HR, Orekhov AN (1988) Prostacyclin, thromboxane A2 and calcium antagonists: effects on atherosclerotic characteristics of vascular cells. Biomed Biochim Acta 47(10/11):S324–S327.

    PubMed  CAS  Google Scholar 

  33. Orekhov AN, Tertov VV, Khashimov KA, Kudryashov SA, Smirnov VN (1986) Antiatherosclerotic effects of Verapamil in primary culture of human aortic intimai cells. J Hypertens [Suppl 6] 4:S153–S155.

    CAS  Google Scholar 

  34. Orekhov AN, Tertov VV, Khashimov KA, Kudryashov SA, Smirnov VN (1987) Evidence of antiatherosclerotic action of Verapamil from direct effects on arterial cells. Am J Cardiol 59(5): 495–496.

    Article  PubMed  CAS  Google Scholar 

  35. Orekhov AN, Baldenkov GN, Tertov VV, Li Hwa Ryong, Kozlov SG, Lyakishev AA, Tkachuk VA, Ruda MY, Smirnov VN (1988) Cardiovascular drugs and atherosclerosis: effects of calcium antagonists, beta-blockers, and nitrates on atherosclerotic characteristics of human aortic cells. J Cardiovas Pharmacol [Suppl 6] 12:S66–S68.

    Article  CAS  Google Scholar 

  36. Orekhov AN, Ruda MY, Baldenkov GN, Tertov VV, Khashimov KA, Li Hwa Ryong, Lyakishev A, Kozlov SG, Tkachuk VA, Smirnov VN (1988) Atherogenic effects of beta blockers on cells cultured from normal and atherosclerotic aorta. Am J Cardiol 61(13):1116–1117.

    Article  PubMed  CAS  Google Scholar 

  37. Tertov VV, Orekhov AN, Li Hwa Ryong, Smirnov VN (1988) Intracellular cholesterol accumulation is accompanied by enhanced proliferative activity of human aortic intimai cells. Tissue Cell 20(6):849–854.

    Article  PubMed  CAS  Google Scholar 

  38. Orekhov AN, Tertov VV (1988) Atherogenic low density lipoprotein isolated from the blood of patients with coronary atherosclerosis. In: 8th International symposium on atherosclerosis. Satellite meeting: Modified lipoproteins. Oct 7–8, Venice, pp 145-149.

    Google Scholar 

  39. Chazov EI, Tertov VV, Orekhov AN, Lyakishev AA, Perova NV, Kurdanov KA, Khashimov KA, Novikov ID, Smirnov VN (1986) Atherogenicity of blood serum from patients with coronary heart disease. Lancet 2(8507): 595–598.

    Article  PubMed  CAS  Google Scholar 

  40. Orekhov AN, Tertov VV, Pokrovsky SN, Adamova IY, Martsenyuk ON, Lyakishev AA, Smirnov VN (1988) Blood serum atherogenicity associated with coronary atherosclerosis. Evidence for nonlipid factor providing atherogenicity of low-density lipoproteins and an approach to its elimination. Circ Res 62(3): 421–429.

    PubMed  CAS  Google Scholar 

  41. Chazov EI, Orekhov AN, Tertov VV, Pokrovsky SN, Adamova IY, Lyakishev AA, Gratsianski NA, Nechaev AS, Perova NV, Khashimov KA, Kurdanov KA, Kukharchuk VV, Smirnov VN (1988) Atherogenicity of blood plasma from patients with coronary atherosclerosis and its correction. Atherosclerosis Rev 17:9–20.

    Google Scholar 

  42. Chazov EI, Orekhov AN, Tertov VV, Pokrovsky SN, Adamova IY, Lyakishev AA, Gratsianski NA, Nechaev AS, Perova NV, Khashimov KA, Kurdanov KA, Kukharchuk VV, Smirnov VN (1988) Atherogenicity of blood plasma from patients with coronary atherosclerosis and its correction. Atherosclerosis Rev 17:9–20.

    Google Scholar 

  43. Orekhov AN, Tertov VV, Mukhin DN, Mikhailenko IA (1989) Modification of low density lipoprotein by desialylation causes lipid accumulation in cultured cells. Discovery of desyalylated lipoprotein with altered cellular metabolism in the blood of atherosclerosic patients. Biochem Biophys Res Commun 162:206–211.

    CAS  Google Scholar 

  44. Goldstein JL, Anderson RGW, Buja LM, Basu SK, Brown MS (1977) Overloading human aortic smooth muscle cells with low density lipoprotein-cholesterol esters reproduced features of atherosclerosis in vitro. J Clin Invest 59:1196–1202.

    Article  PubMed  CAS  Google Scholar 

  45. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) A binding site on macrophages that mediates the uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76:333–337.

    Article  PubMed  CAS  Google Scholar 

  46. Shechter I, Fogelman AM, Haberland ME, Seager J, Hokom M, Edwards PA (1981) The metabolism of native and malondialdehyde-altered low density lipoproteins by human monocyte-macrophages. J Lipid Res 22:63–71.

    PubMed  CAS  Google Scholar 

  47. Weisgraber KH, Innerarity TL, Mahley RW (1978) Role of the lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem 253:9053–9062.

    PubMed  CAS  Google Scholar 

  48. Traber MG, Defendi V, Kayden KJ (1981) Receptor activities for low-density lipoprotein and acetylated low-density lipoprotein in a mouse macrophage cell line (IC21) and in human monocyte-derived macrophages. J Exp Med 154:1852–1867.

    Article  PubMed  CAS  Google Scholar 

  49. Fogelman AM, Haberland ME, Seager J, Hokom M, Edwards PA (1981) Factors regulating the activities of the low density lipoprotein receptor and the scavenger receptor on human monocyte-macrophages. J Lipid Res 22:1131–1141.

    PubMed  CAS  Google Scholar 

  50. Brown MS, Basu SK, Falck Jr, Ho YK, Goldstein JL (1980) The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct 13:67–81.

    Article  PubMed  CAS  Google Scholar 

  51. Basu SK, Brown MS, Ho YK, Goldstein JL (1979) Degradation of low density lipoprotein-dextran sulfate complexes associated with deposition of cholesteryl esters in mouse macrophages. J Biol Chem 254:7141–7146.

    PubMed  CAS  Google Scholar 

  52. Vijayagopal P, Srinivasan SR, Jones KM, Radhakrishnamurthy B, Berenson GS (1985) Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta 837:251–261.

    PubMed  CAS  Google Scholar 

  53. Salisbury BGJ, Falcone DJ, Minick CR (1985) Insoluble low-density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am J Pathol 120:6–11.

    PubMed  CAS  Google Scholar 

  54. Falcone DJ, Mateo N, Shio H, Minick CR, Fowler SD (1984) Lipoprotein-heparin-fibronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages. J Cell Biol 99:1266–1274.

    Article  PubMed  CAS  Google Scholar 

  55. Orekhov AN, Tertov VV, Mukhin DN, Koteliansky VE, Glukhova MA, Khashimov KA, Smirnov VN (1987) Association of low-density lipoprotein with particulate connective tissue matrix components enhances cholesterol accumulation in cultured subendothelial cells of human aorta. Biochim Biophys Acta 928(3):251–258.

    Article  PubMed  CAS  Google Scholar 

  56. Orekhov AN, Tertov VV, Mukhin DN, Koteliansky VE, Glukhova MA, Frid MG, Sukhova GK, Khashimov KA, Smirnov VN (1989) Insolubilization of low density lipoprotein induces cholesterol accumulation in cultured subendothelial cells of human aorta. Atherosclerosis (in press).

    Google Scholar 

  57. Yokode M, Kita T, Arai H, Kawai C, Narumiya S, Fujiwara M (1988) Cholesteryl ester accumulation in macrophages incubated with low density lipoprotein pretreated with cigarette smoke extract. Proc Natl Acad Sci USA 85:2344–2348.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smirnov, V.N., Orekhov, A.N. (1990). Smooth Muscle Cells from Adult Human Aorta. In: Piper, H.M. (eds) Cell Culture Techniques in Heart and Vessel Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75262-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75262-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75264-3

  • Online ISBN: 978-3-642-75262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics