Skip to main content

Abstract

The endothelium is a single layer of epithelioid cells which lines the blood vessels. Because of this unique geography, the endothelium is potentially important in the control of many of the events of vascular biology. The endothelium could be important in determining the flux of molecules into and out of the vascular space. The endothelium could also control the movement of cells from the blood to the tissues and potentially the flow of tissue lymphocytes back into the circulation. Because of its unique location and own active metabolism the endothelium could also act as a sensor of intravascular events and at the same time an initiator of messages to parts of the vessel wall outside the vessel lumen. All of these potential roles have stimulated investigators for many years. However, the geography of the endothelium has also made it very difficult to precisely investigate these potential functions and ascribe them solely to the endothelium. Other components of the vessel wall may contribute to limiting the flux of molecules from the blood to the tissues, and it is very difficult to sample the contents of the immediate extravascular space. Other components of the vessel wall may also restrict the movement of cells from the blood to the tissues and vice versa. Similarly, the endothelium is not the only cell type in the vessel wall capable of secreting important messenger molecules. Even when these messenger molecules are identified in cultures of endothelium, the potential precision of the message that might reside in the polarity of release of the molecules remains difficult to determine.

Supported in part by grants from the National Institutes of Health, HL 33540, HL 36605, and HL14230

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Misfeldt DS, Hamamoto ST, Pitelka DR (1976) Transepithelial transport in cell culture. Proc Natl Acad Sci USA 73:1212–1216.

    Article  PubMed  CAS  Google Scholar 

  2. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77:853–880.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor RF, Price TH, Schwartz SF, Dale DC (1981) Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters. J Clin Invest 67:584–587.

    Article  PubMed  CAS  Google Scholar 

  4. McCall E, Povey J, Dumonde DC (1981) Fluid flow studies on vascular endothelium cultured on micropore membranes. Agents Actions 11:654–657.

    Article  PubMed  CAS  Google Scholar 

  5. Shasby DM, Shasby SS, Sullivan JM, Peach MJ (1982) Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ Res 51:657–661.

    PubMed  CAS  Google Scholar 

  6. Shasby DM, Shasby SS, Peach MJ (1983) Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs: role of oxygen radicals and granulocyte adherence. Am Rev Respir Dis 127:72–76.

    PubMed  CAS  Google Scholar 

  7. Shasby DM, Shasby SS (1986) Effects of calcium on transendothelial albumin transfer and electrical resistance. J Appl Physiol 60:71–79.

    PubMed  CAS  Google Scholar 

  8. Shasby DM, Shasby SS, Peach MJ (1985) Polymorphonuclear leukocyte-arachidonate edema in isolated perfused lungs and monolayers of cultured endothelial cells. J Appl Physiol 59:47–55.

    PubMed  CAS  Google Scholar 

  9. Carson MM, Shasby SS, Shasby DM (1989) Histamine and inositol phosphate accumulation in endothelium: cAMP and a G protein. Am J Physiol 1 (in press).

    Google Scholar 

  10. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14:396–402.

    Article  PubMed  CAS  Google Scholar 

  11. Rutten MJ, Hoover RL, Karnovsky MJ (1987) Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res 425:301–310.

    Article  PubMed  CAS  Google Scholar 

  12. Postlethwaite AE, Snyderman R, Kang AH (1976) The chemotactic attraction of human fibroblasts to a lymphocyte-derived factor. J Exp Med 144:1188–1203.

    Article  PubMed  CAS  Google Scholar 

  13. Albelda SM, Sampson PM, Haselton FR, McNiff JM, Mueller SN, Williams SK, Fishman AP, Levine EM (1988) Permeability characteristic of cultured endothelial cell monolayers. J Appl Physiol 64:308–322.

    PubMed  CAS  Google Scholar 

  14. Madri JA, Williams SK (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  15. Baetscher M, Brune K (1983) An in vitro system for measuring endothelial permeability under hydrostatic pressure. Exp Cell Res 148:541–547.

    Article  PubMed  CAS  Google Scholar 

  16. Darby H, Brown KA, Anderson RA, Williams BT, Dumonde DC (1988) Transendothelial Chemotaxis in vitro of human monocytes. J Immunol Methods 113:157–163.

    Article  PubMed  CAS  Google Scholar 

  17. Furie MB, Cramer EB, Naprstek BL, Silverstein SC (1984) Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current. J Cell Biol 98:1033–1041.

    Article  PubMed  CAS  Google Scholar 

  18. Huang AJ, Furie MB, Nicholson SC, Fischbarg J, Liebovitch LS, Silverstein SC (1988) Effects of human neutrophil Chemotaxis across human endothelial cell monolayers on the permeability of these monolayers to ions and macromolecules. J Cell Physiol 135:355–366.

    Article  PubMed  CAS  Google Scholar 

  19. Shasby DM, Roberts RL (1987) Transendothelial transfer of macromolecules in vitro. Fed Proc 46:2506–2510.

    PubMed  CAS  Google Scholar 

  20. Shasby DM, Peterson MW (1987) Effects of albumin concentration on endothelial albumin transport in vitro. Am J Physiol 253:H654-H661.

    Google Scholar 

  21. Cooper JA, DelVecchio PJ, Minnear FL, Burhop KE, Selig WM, Garcia JG, Malik AB (1987) Measurement of albumin permeability across endothelial monolayers in vitro. J Appl Physiol 62:1076–1083.

    PubMed  CAS  Google Scholar 

  22. Suttorp N, Hessz T, Seeger W, Wilke A, Koob R, Lutz F, Drenckhahn D (1988) Bacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 255:C368-C376.

    Google Scholar 

  23. Langeler EG, Snelting-Havinga I, van Hinsbergh VWM (1989) Passage of low density lipoproteins through monolayers of human arterial endothelial cells. Arteriosclerosis 9 (in press).

    Google Scholar 

  24. King G, Johnson SM (1985) Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586.

    Article  PubMed  CAS  Google Scholar 

  25. Shasby DM, Stoll JL, Spector AA (1987) Polarity of arachidonic acid metabolism by bovine aortic endothelial cell monolayers. Am J Physiol 253:H1177-H1183.

    Google Scholar 

  26. Kaduce TL, Figard PH, Leifur R, Spector AA (1989) Formation of 9-hydroxyoctadecanoic acid from linoleic acid in endothelial cells. J Biol Chem 264:6823–6830.

    PubMed  CAS  Google Scholar 

  27. Svendsen JH, Paaske WP, Sejrsen P, Haunso S (1989) Capillary permeability of 131l-albumin in canine myocardium as determined by bolus injection, residue detection. Microvasc Res 37:352–356.

    Article  PubMed  CAS  Google Scholar 

  28. Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 36:155–159.

    Article  Google Scholar 

  29. Beck DW, Vinters HV, Hart MN, Cancilla PA (1984) Glial cells influence polarity of the blood-brain barrier. J Neuropathol Exp Neurol 43:219–224.

    Article  PubMed  CAS  Google Scholar 

  30. Meyrick B, Hoover R, Jones MR, Berry LC, Brigham KL (1989) In vitro effects of endotoxin on bovine sheep lung microvascular and pulmonary artery endothelial cells. J Cell Physiol 138:165–174.

    Article  PubMed  CAS  Google Scholar 

  31. Haselton FR, Mueller SN, Howell RE, Levine EM, Fishman AP (1989) Chromatographic demonstration of reversible changes in endothelial permeability. J Appl Physiol (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shasby, D.M., Shasby, S.S. (1990). Endothelial Cells Grown on Filter Membranes. In: Piper, H.M. (eds) Cell Culture Techniques in Heart and Vessel Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75262-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75262-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75264-3

  • Online ISBN: 978-3-642-75262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics