Skip to main content

Abstract

In addition to providing a nonthrombogenic surface, synthesizing factor VIII, and participating in vascular tone regulation, most endothelial cells of the vasculature of the brain participate in the blood-brain barrier. The bloodbrain barrier severely restricts the entry of macromolecules into nervous tissue and provides a selective permeability barrier to a variety of other solutes [5, 23]. The site of this barrier is the brain endothelial cells which exhibit continuous tight junctions, very low amounts of transcytosis, and a polar distribution of transport carriers between luminal and antiluminal plasma membranes.

The opinons and assertions contained herein are the private views of the authors and are not to be construed as official nor do they reflect the views of the Department of the Army or the Department of Defense (AR 360-5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absher M (1973) Hemocytometer counting. In: Kruse PF, Patterson MKJ (eds) Tissue culture: methods and applications. Academic, San Francisco, pp 395–397.

    Google Scholar 

  2. Albelda SM, Sampson PM, Haselton FR, McNiff JM, Mueller SN, Williams SK, Fishman AP, Levine EM (1988) Permeability characteristics of cultured endothelial cell monolayers. J Appl Physiol 64:308–322.

    PubMed  CAS  Google Scholar 

  3. Antonelli-Orlidge A, Saunders KB, Smith SR, d’Amore PA (1989) An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86:4544–4548.

    Article  PubMed  CAS  Google Scholar 

  4. Arthur RE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev Brain Res 36:155–159.

    Article  Google Scholar 

  5. Betz AL, Goldstein GW (1986) Specialized properties and solute transport in brain capillaries. Annu Rev Physiol 48:241–250.

    Article  PubMed  CAS  Google Scholar 

  6. Bowman PD, Betz AL, Goldstein GW (1979) Characteristics of cultured brain capillaries. J Cell Biol 83:95.

    Google Scholar 

  7. Bowman PD, Betz AL, Ar D, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW (1981) Primary culture of capillary endothelium from rat brain. In Vitro 17:353–362.

    Article  PubMed  CAS  Google Scholar 

  8. Bowman PD, Betz AL, Goldstein GW (1982) Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 18:626–632.

    Article  PubMed  CAS  Google Scholar 

  9. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14:396–402.

    Article  PubMed  CAS  Google Scholar 

  10. Bowman PD, Rarey K, Rogers C, Goldstein GW (1985) Primary culture of capillary endothelial cells from the spiral ligament and stria vascularis of bovine inner ear. Cell Tissue Res 241:479–486.

    Article  PubMed  CAS  Google Scholar 

  11. Carson MP, Haudenschild CC (1986) Microvascular endothelium and pericytes: high yield, low passage cultures. In Vitro Cell Dev Biol 22:344–354.

    Article  PubMed  CAS  Google Scholar 

  12. Cereijido M, Dolan WJ, Rotunno CA, Sabatini DD (1978) Polarized monolayers formed by epithelial cells on permeable and translucent support. J Cell Biol 77:853–880.

    Article  PubMed  CAS  Google Scholar 

  13. Chung-Welch H, Shepro D, Dunham B, Hechtman HB (1988) Prostacyclin and Prostaglandin E2 secretions by bovine pulmonary microvessel endothelial cells are altered by changes in culture conditions. J Cell Physiol 135:224–234.

    Article  PubMed  CAS  Google Scholar 

  14. De Bault LE (1982) Isolation and characterization of the cells of the cerebral microvessels. Adv Cell Neurobiol 3:339–371.

    Google Scholar 

  15. De Bault LE, Cancilla PA (1979) Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207:653–655.

    Article  Google Scholar 

  16. De Bault LE, Henriquez E, Hart MN, Cancilla PA (1981) Cerebral microvessels and derived cells in tissue culture. II. Establishment, identification, and preliminary characterization of an endothelial cell. In Vitro 17:480–494.

    Article  Google Scholar 

  17. Diglio CA, Grammas P, Giacomelli F, Wiener J (1982) Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth and characterization. Lab Invest 46:554–563.

    PubMed  CAS  Google Scholar 

  18. Diglio CA, Grammas P, Giacomelli F, Wiener J (1986) Rat cerebral microvascular smooth muscle cells in culture. J Cell Physiol 129:131–141.

    Article  PubMed  CAS  Google Scholar 

  19. Dorovini-Zis K, Bowman PD, Betz AL, Goldstein GW (1984) Hyperosmotic arabinose solutions open the tight junctions between brain capillary endothelial cells in tissue culture. Brain Res 302:383–386.

    Article  PubMed  CAS  Google Scholar 

  20. Dorovini-Zis K, Bowman PD, Betz AL, Goldstein GW (1987) Hyperosmotic urea reversibly opens the tight junctions between brain capillary endothelial cells in cell culture. Neuropathol Exp Neur 46:130–140.

    Article  CAS  Google Scholar 

  21. Engerman RL, Pfaffenback D, Davis MD (1967) Cell turnover of capillaries. Lab Invest 17:738–743.

    PubMed  CAS  Google Scholar 

  22. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412.

    Article  PubMed  CAS  Google Scholar 

  23. Ford DH (1976) Blood-brain barrier: a regulatory mechanism. In: Ehrenpreis S, Kopin IJ (eds) Reviews of neuroscience. Raven, New York, pp 1–42.

    Google Scholar 

  24. Gitlin JD, d’Amore PA (1983) Culture of retinal capillary cells using selective growth media. Microvasc Res 26:74–80.

    Article  PubMed  CAS  Google Scholar 

  25. Goetz IE, Warren J, Estrada C, Roberts E, Krause DN (1985) Long-term serial cultivation of arterial and capillary endothelium from adult bovine brain. In Vitro Cell Dev Biol 21:172–180.

    Article  PubMed  CAS  Google Scholar 

  26. Gospodarowicz D, Massoglia S, Cheng J, Fujii DK (1986) Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol 127:121–136.

    Article  PubMed  CAS  Google Scholar 

  27. Gross PM, Spositi NM, Pettersen SE, Fenstermacher JD (1986) Differences in function and structure of the capillary endothelium in gray matter, white matter and circumventricular organ of rat brain. Blood Vessels 23:261-270.

    Google Scholar 

  28. Hormia M, Lehto V-P, Virtanen I (1984) Intracellular localization of factor VIII-related antigen and fibronectin in cultured human endothelial cells: evidence for divergent routes of intracellular translocation. Eur J Cell Biol 33:217–228.

    PubMed  CAS  Google Scholar 

  29. Jaffe EA (1984) Synthesis of factor VIII by endothelial cells. In: Jaffe EA (ed) Biology of endothelial cells. Nijhoff, Boston, pp 209–214.

    Chapter  Google Scholar 

  30. Joó F, Karnushina I (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48.

    PubMed  Google Scholar 

  31. Knedler A, Ham RG (1987) Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell Dev Biol 23:481–491.

    Article  PubMed  CAS  Google Scholar 

  32. Lewis LJ, Hoak JC, Maca RD, Fry GL (1973) Replication of human endothelial cells in culture. Science 181:453–454.

    Article  PubMed  CAS  Google Scholar 

  33. Lierse W, Horstmann E (1965) Quantitative anatomy of the cerebral vascular bed with especial emphasis on homogeneity and inhomogeneity in small parts of the gray and white matter. Acta Neurol Scand [Suppl]14:15–19.

    CAS  Google Scholar 

  34. Nagy Z, Peters H, Hüttner I (1984) Fracture faces of cell junctions in cerebral endothelium during hyperosmotic conditions. Lab Invest 50:313–322.

    PubMed  CAS  Google Scholar 

  35. Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417.

    Article  PubMed  CAS  Google Scholar 

  36. Orlidge A, d’Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105:1455–1462.

    Article  PubMed  CAS  Google Scholar 

  37. Panula P, Joo F, Rechardt L (1978) Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34:95–97.

    Article  PubMed  CAS  Google Scholar 

  38. Pauli BU, Weinstein RS, Soble LW, Alroy J (1977) Freeze-fracture of monolayer cultures. J Cell Biol 72:763–769.

    Article  PubMed  CAS  Google Scholar 

  39. Phillips P, Kumar P, Kumar S, Waghe M (1979) Isolation and characterization of endothelial cells from rat and cow brain white matter. J Anat 129:261–272.

    PubMed  CAS  Google Scholar 

  40. Reese TJ, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217.

    Article  PubMed  CAS  Google Scholar 

  41. Rupnick MA, Carey A, Williams SK (1988) Phenotypic diversity in cultured cerebral microvascular endothelial cells. In Vitro Cell Dev Biol 24:435–444.

    Article  PubMed  CAS  Google Scholar 

  42. Rutten MJ, Hoover RL, Karnovsky MJ (1987) Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res 425:301–310.

    Article  PubMed  CAS  Google Scholar 

  43. Schneeberger EE, Lynch RD (1984) Tight junctions: their structure, composition, and function. Circ Res 55:723–733.

    PubMed  CAS  Google Scholar 

  44. Shannon JE, Macy ML (1973) Freezing, storage, and recovery of cell stocks. In: Kruse PF, Patterson MKJ (eds) Tissue culture: methods and applications. Academic, San Francisco, pp 712–718.

    Google Scholar 

  45. Shivers RR, Bowman PD (1985) A freeze-fracture paradigm of the mechanism for delivery and insertion of gap junction particles into the plasma membrane. J Submicrosc Cytol 17:199–203.

    PubMed  CAS  Google Scholar 

  46. Shivers RR, Bowman PD, Martin K (1985) A model for de novo synthesis and assembly of tight intercellular junctions. Ultrastructural correlates and experimental verification of the mode revealed by freeze-fracture. Tissue Cell 17:417–440.

    Article  PubMed  CAS  Google Scholar 

  47. Shivers RR, Arthur FE, Bowman PD (1988) Induction of gap junctions and brain endothelium-like tight junctions in cultured bovine endothelial cells: local control of cell specialization. J Submicrosc Cytol Pathol 21:1–14.

    Google Scholar 

  48. Shivers RR, Pollock M, Bowman PD, Atkinson BG (1988) The effect of heat shock on primary cultures of brain capillary endothelium: inhibition of assembly of zonulae occludentes and the synthesis of heat-shock proteins. Eur J Cell Biol 46:181–195.

    PubMed  CAS  Google Scholar 

  49. Siakotos AN (1974) The isolation of endothelial cells from normal human and bovine brain. In: Fleischer S, Packer L (eds) Methods Enzymol. Academic Press, San Francisco, XXXII part B, pp 717–722.

    Google Scholar 

  50. Siakotos AN, Rouser G, Fleischer S (1969) Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. Lipids 4:234–239.

    Article  PubMed  CAS  Google Scholar 

  51. Simionescu M, Ghinea N, Fixman A, Lasser M, Kukes L, Simionescu N, Palade GE (1988) The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J Submicrosc Cytol Pathol 20:243–261.

    PubMed  CAS  Google Scholar 

  52. Spatz M, Bembry J, Dodson RF, Hervonen H, Murray MR (1980) Endothelial cell cultures derived from isolated cerebral microvessels. Brain Res 191:577–582.

    Article  PubMed  CAS  Google Scholar 

  53. Sporn LA, Marder VJ, Wagner DD (1987) Von Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively. Blood 69:1531–1534.

    PubMed  CAS  Google Scholar 

  54. Sternberger NH, Sternberger LA (1987) Blood-brain barrier protein recognized by monoclonal antibody. Proc Natl Acad Sci USA 84:8169–8173.

    Article  PubMed  CAS  Google Scholar 

  55. Stevenson BR, Anderson JM, Bullivant S (1988) The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem 83:129–145.

    Article  PubMed  CAS  Google Scholar 

  56. Thornton SC, Mueller SN, Levine EM (1983) Human endothelial cells: use of heparin in cloning and long term serial cultivation. Science 222:623–625.

    Article  PubMed  CAS  Google Scholar 

  57. Tontsch U, Bauer H-C (1989) Isolation, characterization, and long-term cultivation of porcine and murine cerebral capillary endothelial cells. Microvasc Res 37:148–161.

    Article  PubMed  CAS  Google Scholar 

  58. Vinters HV, Reave S, Costello P, Girvin JP, Moore SA (1987) Isolation and culture of cells derived from human cerebral microvessels. Cell Tissue Res 249:657–667.

    Article  PubMed  CAS  Google Scholar 

  59. Vorbrodt AW (1988) Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem. Gustav Fischer Verlag, New York, vol 18, pp 1–99.

    Google Scholar 

  60. Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated low-density lipoprotein. J Cell Biol 99:2034–2040.

    Article  PubMed  CAS  Google Scholar 

  61. Wagner DD, Olmsted JB, Marder VJ (1982) Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 95:355–360.

    Article  PubMed  CAS  Google Scholar 

  62. Wagner RC, Matthews MA (1975) The isolation and culture of capillary endothelium from epididymal fat. Microvasc Res 10:286–297.

    Article  PubMed  CAS  Google Scholar 

  63. Wall RT, Marker LA, Quadracci LJ, Striker GE (1978) Factors influencing endothelial cell proliferation in vitro. J Cell Physiol 96:203–215.

    Article  PubMed  CAS  Google Scholar 

  64. Williams SK, Gillis JF, Matthews MA, Wagner RC, Bitensky MW (1980) Isolation and characterization of brain endothelial cells: morphology and enzyme activity. J Neurochem 35:374–383.

    Article  PubMed  CAS  Google Scholar 

  65. Yablonka-Reuveni Z (1989) The emergence of the endothelial cell lineage in the chick embryo can be detected by uptake of acetylated low density lipoprotein and the presence of a von Willebrand-like factor. Dev Biol 132:230–240.

    Article  PubMed  CAS  Google Scholar 

  66. Zetter BR (1984) Culture of capillary endothelial cells. In: Jaffe EA (ed) Biology of endothelial cells. Nijhof, Boston, pp 14–26.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bowman, P.D., du Bois, M., Dorovini-Zis, K., Shivers, R.R. (1990). Microvascular Endothelial Cells from Brain. In: Piper, H.M. (eds) Cell Culture Techniques in Heart and Vessel Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75262-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75262-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75264-3

  • Online ISBN: 978-3-642-75262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics