Advertisement

Pyrolysis-Gas Chromatography-Mass Spectrometry

  • D. Meier
  • O. Faix
Part of the Springer Series in Wood Science book series (SSWOO)

Abstract

Pyrolysis is the transformation of a nonvolatile compound into a volatile degradation mixture by heat in the absence of oxygen. A rate of heating to the final temperature in the millisecond range is typical for analytical pyrolysis, in contrast to the slow heating rates employed for other thermal characterization techniques, e.g., thermogravimetry (TG) and differential scanning calorimetry (DSC), that are in the range of minutes or hours. Simple sample preparation (drying and milling), rapid analysis times (from minutes up to 1.5 h) and small sample size (1 to 100µg) are the key features of analytical pyrolysis. Comprehensive books on special applications of pyrolysis are available (Irwin 1982, Meuzelaar et al. 1982, Voorhees 1984, Liebman and Levy 1985, Linskens and Jackson 1986).

Keywords

Pyrolysis Product Coniferyl Alcohol Sinapyl Alcohol Milled Wood Lignin Lignin Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boon JJ, Pouwels AD, Eijkel GB (1987) Pyrolysis high-resolution gas chromatography-mass spectrometry studies on beech wood: capillary high-resolution mass spectrometry of a beech lignin fraction. Biochem Soc Trans 15: 170–174Google Scholar
  2. Danielson ND, Glajch JL, Rogers LB (1978) Pyrolysis gas chromatography of enzymes. J Chromatogr Sci 16: 455–461PubMedGoogle Scholar
  3. Ericsson I (1980) Determination of the temperature-time profile of filament pyrolyzers. J Anal Appl Pyrolysis 2: 187–194CrossRefGoogle Scholar
  4. Ericsson I (1985) Influence of pyrolysis parameters on results in pyrolysis-gas chromatography. J Anal Appl Pyrolysis 8: 73–86CrossRefGoogle Scholar
  5. Faix O, Meier D, Grobe I (1987) Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection. J Anal Appl Pyrolysis 11: 403–416CrossRefGoogle Scholar
  6. Faix O, Meier D, Grobe I (1988a) Pyrolysis-gas chromatography-mass spectrometry of two trimeric lignin model compounds with alkyl-aryl structure. J Anal Appl Pyrolysis 14: 135–148CrossRefGoogle Scholar
  7. Faix O, Jakab E, Till F, Szekely T (1988b) Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry. Wood Sci Technol 22: 323–334CrossRefGoogle Scholar
  8. Faix O, Meier D, Fortmann I (1990a) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz Roh- Werkst 48: 281–285CrossRefGoogle Scholar
  9. Faix O, Meier D, Fortmann I (1990b) Thermal degradation of wood. A collection of electron- impact (EI) mass spectra of monomeric lignin derived products. Holz Roh- Werkst 48: 351–354CrossRefGoogle Scholar
  10. Faix O, Bremer J, Schmidt O, Stevanovic T (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy. J Anal Appl Pyrolysis 21: 147–162CrossRefGoogle Scholar
  11. Funazukuri T, Hudgins RR, Silveston PL (1987) Product distribution for flash pyrolysis of cellulose in a coil pyrolyzer. J Anal Appl Pyrolysis 10: 225–249CrossRefGoogle Scholar
  12. Gardner DJ, Schultz TP, McGinnis GD (1985) The pyrolytic behavior of selected lignin preparations. J Wood Chem Technol 5: 85–110CrossRefGoogle Scholar
  13. Genuit W, Boon JJ (1985) Pyrolysis-gas chromatography-photoionization-mass spectrometry, a new approach in the analysis of macromolecular materials. J Anal Appl Pyrolysis 8: 25–40CrossRefGoogle Scholar
  14. Genuit W, Boon JJ, Faix O (1987) Characterization of beech milled wood lignin by pyrolysis- gas chromatography-photoionization mass spectrometry. Anal Chem 59: 508–512CrossRefGoogle Scholar
  15. Hartley RD, Haverkamp J (1984) Pyrolysis-mass spectrometry of the phenolic constituents of plant cell walls. J Sci Food Agric 35: 14–20CrossRefGoogle Scholar
  16. Haw JF, Schultz TP (1985) Carbon-13 CP/MAS NMR and FT-IR study of low-temperature lignin pyrolysis. Holzforschung 39: 289–296CrossRefGoogle Scholar
  17. Irwin WJ (1982) Analytical pyrolysis - a comprehensive guide. Chromatographic Science, Vol. 22. Marcel Dekker, New York, 578 ppGoogle Scholar
  18. Kovacik V, Mihalov V, Brezny R (1980) Mass spectrometry of lignin model substances III. Structure determination of /¿-linked dimers by mass spectrometry. Cellul Chem Technol 14: 233–241Google Scholar
  19. Kovacik V, Skamla J (1969) Massenspektrometrie einiger Modellsubstanzen des Lignins II. Chem Ber 102: 3623–3631CrossRefGoogle Scholar
  20. Kovacik V, Skamla J, Joniak D, Kosikova B (1969) Massenspektrometrie einiger Modellsubstanzen des Lignins I. Chem Ber 102: 1513–1522CrossRefGoogle Scholar
  21. Kratzl K, Czepel H, Gratzl J (1965) Gaschromatographische Studien zur Pyrolyse des Lignins. Holz Roh Werkst 23: 237–240CrossRefGoogle Scholar
  22. Lattimer RP, Schur KM (1985) Quantitative analysis of rubber triblends by pyrolysis-mass spectrometry. J Anal Appl Pyrolysis 8: 95–107CrossRefGoogle Scholar
  23. Liebman SA, Levy EJ (1985) Pyrolysis and GC in polymer analysis. Marcel Dekker, New York, 557 ppGoogle Scholar
  24. Lindberg JJ, Raisanen S, Niemi R (1982) GC-MS studies on the pyrolysis of wood and lignin. Gov Rep Announce Index (U.S.) 1984 84: 163–173Google Scholar
  25. Linskens HF, Jackson JF (1986) Gas chromatography/mass spectrometry. Springer, Berlin Heidelberg New York Tokyo, 304 ppGoogle Scholar
  26. Martin F, Saiz-Jimenez C, Gonzalez-Vila FJ (1979) Pyrolysis-gas chromatography-mass spectrometry of lignins. Holzforschung 33: 210–212CrossRefGoogle Scholar
  27. Metzger J (1979) Chemische Ionisations-Massenspektrometrie von Ligninen. Fresenius Z Anal Chem 295: 45–46Google Scholar
  28. Meuzelaar HLC, Haverkamp J, Hileman FD (1982) Pyrolysis mass spectrometry of recent and fossil biomaterials - compendium and atlas. Elsevier, Amsterdam, 293 ppGoogle Scholar
  29. Mulder MM, Pureveen JBM, Boon JJ, Martinez AT (1990) An analytical pyrolysis mass spectrometric study of Eucryphia cordifolia wood decayed by white-rot and brown-rot fungi. J Anal Appl Pyrolysis 19: 175–191CrossRefGoogle Scholar
  30. Müller M (1980) Beitrag zum Einsatz der Curie-Punkt-Pyrolyse-Massenspektrometrie in der Analytik von Naturstoffen. Dissertation ETH 6743, ZürichGoogle Scholar
  31. Obst JR (1983) Analytical pyrolysis of hardwood and softwood lignins and its use in lignin-type determination of hardwood vessel elements. J Wood Sci Technol 3: 377–397CrossRefGoogle Scholar
  32. Pouwels AD, Boon JJ (1987) Analysis of lignin and chlorolignin residues in a beech xylan fraction by pyrolysis gas chromatography mass spectrometry. J Wood Sci Technol 7: 197–213CrossRefGoogle Scholar
  33. Saiz-Jimenez C, DeLeeuw JW (1984) Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins. Org Geochem 6: 417–422CrossRefGoogle Scholar
  34. Saiz-Jimenez C, DeLeeuw JW (1986) Lignin pyrolysis products: their structure and their significance as biomarkers. Adv Org Geochem 1985, Org Geochem 10: 869–876CrossRefGoogle Scholar
  35. Saiz-Jimenez S, Boon JJ, Hedges JI, Hessels JKS, DeLeeuw JW (1987) Chemical characterization of recent and buried woods by analytical pyrolysis. Comparison of pyrolysis data with 13C NMR and wet chemical data. J Anal Appl Pyrolysis 11: 437–450CrossRefGoogle Scholar
  36. Salo S, Niemelä S, Elomaa M, Lindberg JJ (1989) Identification of lignins by pyrolytical methods. Holzforschung 43: 257–261CrossRefGoogle Scholar
  37. Tromp PJJ (1987) Coal pyrolysis - basic phenomena relevant to conversion processes. Dissertation, University Amsterdam, FOM-Institute, AmsterdamGoogle Scholar
  38. Voorhees KJ (1984) Analytical pyrolysis - techniques and applications. Butterworths, London, 486 ppGoogle Scholar
  39. Wampler TP, Levy EJ (1987) Reproducibility in pyrolysis: recent developments. J Anal Appl Pyrolysis 12: 75–82CrossRefGoogle Scholar
  40. Wells G, Voorhees KJ, Futrell JH (1980) Heating profile curves for resistively heated filament pyrolyzers. Anal Chem 52: 1782–1784CrossRefGoogle Scholar
  41. Wieten G, Meuzelaar HLC, Haverkamp J (1984) Analytical pyrolysis in clinical and pharmaceutical microbiology. In: Odham G, Larsson L, Mardh PA (eds) Gas chromatography/mass spectrometry - applications in microbiology. Plenum, New York, 335–358Google Scholar
  42. Windig W, Meuzelaar HLC, Shafizadeh F, Kelsey RG (1984) Biochemical analysis of wood and wood products by pyrolysis-mass spectrometry and multivariate analysis. J Anal Appl Pyrolysis 6: 233–250CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. Meier
  • O. Faix

There are no affiliations available

Personalised recommendations