Skip to main content

Homology of Calcium-Modulated Proteins: Their Evolutionary and Functional Relationships

  • Conference paper
The Calcium Channel: Structure, Function and Implications

Part of the book series: Bayer AG Centenary Symposium ((BAYER))

Abstract

In 1972 Kretsinger published a “Gene Triplication Deduced from the Tertiary Structure” of parvalbumin. He then proposed (1975) that “ Calcium Modulated Proteins Contain EF-Hands”. Calcium-modulated proteins, as a distinct superfamily of all the proteins that bind calcium, are defined by two characteristics. They are found within the cytosol or on a membrane facing the cytosol. They bind calcium with a dissociation constant about 10-6 M under cytosolic conditions, i. e., about 10-3 M free Mg2+ ion. They are inferred to be involved in transmitting the information inherent in calcium’s functioning as a cytosolic messenger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken A, Klee CB, Cohen P (1984) The structure of the B subunit of calcineurin. Eur J Biochem 139:663–671

    Article  PubMed  CAS  Google Scholar 

  • Baba ML, Goodman M, Berger-Cohn J, Demaille JG, Matsuda G (1984) The early adaptive evolution of calmodulin. Mol Bioi Evol 1:442–455

    CAS  Google Scholar 

  • Babu YS, Sack JS, Greenbough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 315:37–40

    Article  PubMed  CAS  Google Scholar 

  • Baum P, Furlong C, Byers B (1986) Yeast gene required for spindle pole body duplication: homology of its product with Ca2+ -binding proteins. Proc Natl Acad Sci 83:5512–5516

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards A WF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 550–570

    Google Scholar 

  • Charbonneau H, Kumar, Walsh KA, Cormier MI, MS in preparation

    Google Scholar 

  • Cox J, Bairoch A (1988) Sequence similarities in calcium binding proteins. Nature 331:491–492

    Article  PubMed  CAS  Google Scholar 

  • Falkenthal S, Parker VP, Mattox WW, Davidson N (1984) Drosophila melanogaster has only one myosin alkali It chain gene which encodes a protein with considerable amino acid sequence homology to chicken myosin alkali light chains. Mol Cell Bioi 4:956–965

    CAS  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Amer Naturalist 106:645–668

    Article  Google Scholar 

  • Fitch WM, Margoliash E (1967) The construction of phylogenetic trees - a generally applicable method utilizing estimates of the mutation distance obtained from cytochrome C sequences. Science 155:279–284

    Article  PubMed  CAS  Google Scholar 

  • Fitch WM (1977) The phyletic interpretation of macromolecular sequence information: simple methods. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York, pp 169–204

    Google Scholar 

  • Gillen MF, Banville D, Rutledge RG, Narang S, Seligy VL, Whitfield JF, MacManus JP (1987) A complete complementary DNA for the oncodevelopmental calcium-binding protein, oncomodulin. J Bioi Chern 262:5308–5312

    CAS  Google Scholar 

  • Gillis JM, Thomason DB, LeFevre J, Kretsinger RH (1982) Parvalbumin and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil 3:377–398

    Article  PubMed  CAS  Google Scholar 

  • Goodman M, Pechère JF, Haiech J, Demaille JG (1979) Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J Mol Evol 13:331–352

    Article  PubMed  CAS  Google Scholar 

  • Hardin SH, Carpenter CD, Hardin PE, Bruskin AM, Klein WH (1985) Structure of the spec 1 gene encoding a major calcium-binding protein in the embryonic ectoderm of the sea urchin, strongylocentrotus purpuratus. J Mol Bioi 186:243–255

    Article  CAS  Google Scholar 

  • Hardy DO, Bender PK, Kretsinger RH (1988) Two calmodulin genes are expressed in Arbacia punctulata. An ancient gene duplication is indicated. J Mol Bioi 199:223–227

    Article  CAS  Google Scholar 

  • Henrotte JG (1952) A crystalline constituent from myogen of carp muscle. Nature 169:968–969

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, James MNG (1985) Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature 313:653–659.

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Mengersen A, Lee VD (1988) Molecular cloning of cDNA for caltractin, a basal bodyassociated Ca2+ binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Bioi 107:133–140

    Article  CAS  Google Scholar 

  • Inouye S, Noguchi M, Sakaki Y, Takagi, Miyata T, Iwanaga S, Miyata T, Tsuji F (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci 82:3154–3158

    Article  PubMed  CAS  Google Scholar 

  • Jauregui-Adell J, Wnuk W, Cos JA (1987) Amino-acid sequence ofthe sarcoplasmic calcium-binding protein I (SCP I) from crayfish (Astacus leptodactylus). J Muscle Res Cell Motility 8:92–93

    Google Scholar 

  • Jukes TH (1963) Some recent advances in studies ofthe transcription ofthe genetic message. Adv Bioi Med Phys 9:1–41

    CAS  Google Scholar 

  • Kobayashi T, Takagi T, Konishi K, Cox JA (1987) The primary structure of a new Mr 18,000 calcium vector protein from amphioxus. J Bioi Chern 262:2613–2623

    CAS  Google Scholar 

  • Kobayashi T, Takagi T, Konishi K, Hamada Y, Kawaguchi M, Kohama (1988) Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryote, Physarum polycephalum. J Bioi Chern, in press

    Google Scholar 

  • Kretsinger RH, Nockolds CE, Coffee CJ, Bradshaw RA (1971) The structure of a calcium binding protein from carp muscle. Cold Spring Harbor Symp Quant Bioi 36:217–220

    CAS  Google Scholar 

  • Kretsinger RH (1972) Gene triplication deduced from the tertiary structure of a muscle calcium binding protein. Nature New Bioi 240:85–88

    CAS  Google Scholar 

  • Kretsinger RH (1975) Hypothesis: calcium modulated proteins contain EF hands. In: Carafoli E, Clementie F, Drabikowski W, Margreth A (eds) Calcium transport in contraction and secretion. North-Holland Publishing Co., Amsterdam, pp. 469–478

    Google Scholar 

  • Kretsinger RH, Rudnick SE, Weissman U (1986) Crystal structure of calmodulin. J Inorg Biochem 28:289–302

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger RH (1987) Calcium coordination and the calmodulin folds divergent versus convergent evolution. Cold Spring Harb Symp Quant Bioi 52:449–510

    Google Scholar 

  • Moore GW, Goodman M, Barnabas J (1973) An iterative approach from the standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J Theor Bioi 38:423–457

    Article  CAS  Google Scholar 

  • Moore GW, Barnabas J, Goodman M (1973 b) A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J Theor Bioi 38:459–485

    Article  CAS  Google Scholar 

  • Moore GW (1976) Proof for the maximum parsimony (“red king“) algorithm. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New York, pp 117–137

    Google Scholar 

  • Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330:80–82

    Article  PubMed  CAS  Google Scholar 

  • Patterson C (1987) Introduction. In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, Cambridge, pp 1–22

    Google Scholar 

  • Parmentier M, Lawson DE, Vassart G (1987) Human 27-kDa calbindin complementary DNA sequence: evolutionary and functional implications. Eur J Biochem 170:207–215

    Article  PubMed  CAS  Google Scholar 

  • Persechini A, Kretsinger RH (1988) Toward a model of the calmodulin-myosin light chain kinase complex: implications for calmodulin function. J Cardiovascular Pharm 12 (in press)

    Google Scholar 

  • Pechère JF, Capony JP, Ryden L, Demaille J (1971) The amino acid sequence of the major parvalbumin from hake muscle. Biochem Biophys Res Commun 43:1106–1111

    Article  PubMed  Google Scholar 

  • Putkey JA, Slaughter GR, Means AR (1985) Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. J Bioi Chern 260:4707–4712

    Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed in neurons. J Cell Bioi 105:1343–1353

    Article  CAS  Google Scholar 

  • Salvato M, Sulston J, Albertson D, Brenner S (1986) A novel calmodulin-like gene from the nematode Caenorhabditis elegans. J Mol Bioi 190:281–290

    Article  CAS  Google Scholar 

  • Satyshur KA, Rao ST, Pyzalska D, Drendel W, Greaser M, Sundaralingam M (1988) Refined structure of chicken skeletal muscle troponin C in the two calcium state at 2A resolution. J Bioi Chern 263:1628–1647

    CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Suzuki K, Ohno S, Emori Y, Imajoh S, Kawasaki H (1987) Primary structure and evolution of calcium-activated neutral protease (CANP). J Protein Chern 6:7–15

    CAS  Google Scholar 

  • Swan DG, Hale RS, Dhillon D, Leadlay PF (1987) A bacterial calcium-binding protein homologous to calmodulin. Nature 329:84–85

    Article  PubMed  CAS  Google Scholar 

  • Szenbeyi DME, Moffat K (1986) The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Bioi Chern 261:8761–8777

    Google Scholar 

  • Takagi T, Konishi K (1983) Amino acid sequence of troponin C obtained from ascidian (Halocynthia roretzi) body wall muscle. J Biochem 94:1753–1760

    PubMed  CAS  Google Scholar 

  • Wnuk W, Schoechlin M, Kobayashi T, Takagi T, Konishi K, Hoar PE, Kerrick WGL (1986) Two isoforms of troponin C from crayfish. Their characterization and a comparision of their primary structure with the tertiary structure of skeletal troponin C. J Muscle Res Cell Motil 7:67–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kretsinger, R.H., Moncrief, N.D., Goodman, M., Czelusniak, J. (1988). Homology of Calcium-Modulated Proteins: Their Evolutionary and Functional Relationships. In: Morad, M., Nayler, W.G., Kazda, S., Schramm, M. (eds) The Calcium Channel: Structure, Function and Implications. Bayer AG Centenary Symposium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73914-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73914-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50061-2

  • Online ISBN: 978-3-642-73914-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics