Skip to main content

Sodium Currents Through Neuronal Calcium Channels: Kinetics and Sensitivity to Calcium Antagonists

  • Conference paper
The Calcium Channel: Structure, Function and Implications

Part of the book series: Bayer AG Centenary Symposium ((BAYER))

Abstract

In contrast to their physiological role, calcium channels of various tissues become highly permeable to Na+ ions when the free Ca2+ concentration is lowered below micromolar levels (Kostyuk et aI., 1983; Almers and McCleskey, 1984; Fukushima and Hagiwara, 1985; Hess et al., 1986; Carbone and Lux, 1987 c). This feature mightderive either from the presence of a regulatory site of high calcium specificity (Kostyuk et aI., 1983; Kostyuk and Mironov, 1986; Lux and Carbone, 1987) whose occupation by Ca2+ inhibits Na+ permeation or, alternatively, from the existence of two binding sites within the channel pore whose simultaneous occupation by Ca2+ promote Ca2+ flow by ion-ion interactions (Almers and McCleskey, 1984; Hess and Tsien, 1984). Recent observations based on single-channel measurements (Lux and Carbone, 1987; Carbone and Lux, 1987a) and rapid exchange of extracellular Ca2+ and H+ concentration (Hablitz et aI., 1986; Konnerth et aI., 1987; Davies et aI., 1988) have provided further support for the former view, i. e., calcium channels might possess two distinct permeability states for Ca2+ and Na+ ions.

This work was partially supported by NATO (grant no. 0576/87) and the Consiglio Nazionale delle Ricerche (grant no. 87.00068.04).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers W, McCleskey EW (1984) Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiology (Lond) 353:585–608

    CAS  Google Scholar 

  • Armstrong D, Eckert R (1987) Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci (USA) 84:2518–2522

    Article  CAS  Google Scholar 

  • Armstrong CM, Matteson DR (1985) Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67

    Article  PubMed  CAS  Google Scholar 

  • Barhanin J, Shimd A, Lazdunski M (1988) Properties of structure and interaction of the receptor for ω-Conotoxin, a polypetide active on Ca2+ channels. Biochem Biophys Res Commun 150: 1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Boll W, Lux HD (1985) Action of organic antagonists on neuronal calcium currents. Neuroscience Lett 56:335–339

    Article  CAS  Google Scholar 

  • Bossu JL, Feltz A, Thomann JM (1986) Depolarization elicits two distinct calcium currents in vertebrate sensory neurons. Pflugers archiv Europ J Physiol 403:360–368

    Article  Google Scholar 

  • Carbone E, Lux HD (1984a) A low voltage-activated fully inactivating calcium channel in vertebrate sensory neurons. Nature (Lond) 310:501–503

    Article  CAS  Google Scholar 

  • Carbone E, Lux HD (1984b) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46:413–418

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1986a) Sodium channels in cultured chick dorsal root ganglion neurons. Eur Biophys J 13:259–271

    Article  CAS  Google Scholar 

  • Carbone E, Lux HD (1986b) Low- and high-voltage activated Ca channels in vertebrate cultured neurons: properties and function. In: Heinemann U, Klee M, Neher E, Singer W (eds) Exp Brain Res (Suppl)14:1–8

    Google Scholar 

  • Carbone E, Lux HD (1987a) External Ca2+ ions block unitary Na+ currents through Ca channels of cultured chick sensory neurones by favoring prolonged closures. J Physiology (Lond) 382:125P

    Google Scholar 

  • Carbone E, Lux HD (1987b) Kinetics and selectivity of a low voltage-activated Ca current in chick and rat sensory neurones. J Physiology (Lond) 386:547–570

    CAS  Google Scholar 

  • Carbone E, Lux HD (1987c) Single low voltage-activated calcium channels in chick and rat sensory neurones. J Physiology (Lond) 386:571–601

    CAS  Google Scholar 

  • Carbone E, Lux HD (1988) ω -Conotoxin blockade distinguishes Ca- from Na-permeable state in neuronal Ca channels. Pflugers Arch Eur J Physiol (in press)

    Google Scholar 

  • Carbone E, Morad M, Lux HD (1987) External Ni2+ selectively blocks the low-threshold Ca2+ currents of chick sensory neurons. Pflugers Archiv Europ J Physiol 408:R60

    Google Scholar 

  • Cavalié A, Ochi R, Pelzer D, Trautwein W (1983) Elementary currents through Ca channels in guinea pig myocytes. Pflugers Arch Europ J Physiol 398:284–297

    Article  Google Scholar 

  • Chad JE, Eckert R (1986) An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones. J Physiology (Lond) 378:31–51

    CAS  Google Scholar 

  • Cruz LJ, Olivera BM (1986) Calcium channel antagonists. ω-Conotoxin defines a new high-affinity site. J Bioi Chem 261:6230–6233

    CAS  Google Scholar 

  • Davies NW, Lux HD, Morad M (1988) Site and mechanism of activation of proton-induced sodium current in chick dorsal root ganglion neurons. J Physiology 399:195–225

    Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels, Prog Biophys Molec Bioi 44:215–267

    Article  CAS  Google Scholar 

  • Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurons. J Physiology (Lond) 359:431–446

    CAS  Google Scholar 

  • Feldman DH, Olivera BM, Yoshikami D (1987) Omega Conus geographus toxin: a peptide that blocks calcium channels. FEBS Lett 214:295–300

    Article  PubMed  CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffine cells. J Physiology (Lond) 331:599–635

    CAS  Google Scholar 

  • Fox AP, Nowycky MC, Tsien R (1987) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiology 394:173–200

    CAS  Google Scholar 

  • Fukushima Y, Hagiwara S (1985) Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J Physiology (Lond) 358:255–284

    CAS  Google Scholar 

  • Hablitz JJ, Heinemann U, Lux HD (1986) Step reductions in extracellular Ca activate a transient inward current in chick dorsal root ganglion cells. Biophys J 50:753–757

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch Europ J Physiol 319:85–100

    Article  Google Scholar 

  • Hess P, Lansmann JF, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations: voltage and concentration dependence of single channel current in guinea pig ventricular heart cells. J Gen Physiol 88:293–319

    Article  PubMed  CAS  Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature (Lond) 309:453–456

    Article  CAS  Google Scholar 

  • Konnerth A, Lux HD, Morad M (1986) Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J Physiology (Lond) 386:603–633

    Google Scholar 

  • Kostyuk PG, Mironov SL, Shuba YM (1983) Two ion-selecting filters in the calcium channel in chick dorsal root ganglion cells. J Membrane Bioi 76:83–93

    Article  Google Scholar 

  • Kostyuk PG, Mironov SL (1986) Some predictions concerning the calcium channel model with different conformational states. Gen Physiol Biophys 6:649–659

    Google Scholar 

  • Lansmann JB, Hess P, Tsien RW (1986) Blockade of calcium current through single calcium channels by Cd2+, Mg2+ and Ca2+: voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88:321–347

    Article  Google Scholar 

  • Lauger P (1985) Ionic channels with conformational substrates. Biophys J 47:581–590

    Article  PubMed  CAS  Google Scholar 

  • Levi R, DeFelice U (1986) Sodium-conducting channels in cardiac membranes in low calcium. Biophys J 50:11–19

    Article  Google Scholar 

  • Llinas R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro. J Physiology (Lond) 315:569–584

    CAS  Google Scholar 

  • Llinas R, Yarom Y (1986) Specific blockage of the low-threshold calcium channel by high molecular weight alcohols. Neurosciences (Abstract) 12:174

    Google Scholar 

  • Lux HD, Carbone E (1987) External Ca ions block Na conducting Ca channel by promoting open to closed transitions. In: Ovchinnikov YA, Hucho F (eds) Receptors and ion channels, Walter de Gruyter & Co, Berlin, pp 149–155

    Google Scholar 

  • Lux HD, Carbone E, Davies N (1987) Monovalent cation currents through low- and high-threshold Ca channels in chick sensory neurons. Pflugers Arch 408 (suppl):R60

    Google Scholar 

  • McCleskey EW, Fox AP, Feldman DH, Cruz U, Olivera BM, Tsien RW, Yoshikami D (1987) ω-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not in muscle. Proc Natl Acad Sci USA 84:4327–4331

    Article  PubMed  CAS  Google Scholar 

  • Morad M, Kaplan JM, Davies NE, Lux HD (1988) Kinetics of Ca2+ -induced Ca2+ channel inactivation and block, using “caged” Ca2+ in dorsal root ganglion neurons. Biophys J 53:21 a

    Google Scholar 

  • Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature (Lond) 316:440–443

    Article  CAS  Google Scholar 

  • Rane SG, Holz GG, Dunlap K (1987) Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Archiv Eur J Physiol 409:361–366

    Article  CAS  Google Scholar 

  • Swandulla D, Armstrong CM (1988) Fast deactivating calcium channels in chick sensory neurons. J gen Physiology (in press)

    Google Scholar 

  • Swandulla D, Carbone E, Schafer K, Lux HD (1987) Effect of menthol on two types of Ca currents in cultured sensory neurons of vertebrates. Pflugers Archiv Europ J Physiol 409:52–59

    Article  CAS  Google Scholar 

  • Tang C, Presser F, Morad M (1988) Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213–215

    Article  PubMed  CAS  Google Scholar 

  • Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235:680–682

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carbone, E., Lux, H.D. (1988). Sodium Currents Through Neuronal Calcium Channels: Kinetics and Sensitivity to Calcium Antagonists. In: Morad, M., Nayler, W.G., Kazda, S., Schramm, M. (eds) The Calcium Channel: Structure, Function and Implications. Bayer AG Centenary Symposium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73914-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73914-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50061-2

  • Online ISBN: 978-3-642-73914-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics