Skip to main content

Structure and Function of Ion Pumps Studied by Atomic Force Microscopy and Gene-transfer Experiments Using Chimeric Na+/K+- and Ca2+ ATPases

  • Chapter
The Sodium Pump

Abstract

Using novel chimeric Ca2+-ATPases modified with portions of Na+/K+-ATPase, and vice versa, we have identified critical domains that govern ion sensitivity, inhibitor specificity, subunit assembly, and activation by Ca2+/calmodulin. Na+ and K+ sensors have been identified in nonconserved regions of the Na+/K+-ATPase sequences; the Na+ sensor, with 69 amino acids, is localized at the amino-terminal region of the α subunit, whereas the K+ sensor, with 161 residues, resides at the carboxy terminus of the same subunit. The assembly domain with the β subunit was identified within the C-terminal 161 amino acids of the Na+/K+-ATPase a subunit (Figure 1), When this region was incorporated into the corresponding region of the sarcoplasmic reticulum (SR) Ca2+-ATPase, the heterodimer of the Na+/K+-ATPase β subunit and the chimeric SR Ca2+-ATPase was formed (25; for details, see Lemas et al. in this volume). The ouabain-sensitive domain was localized within the N-terminal 200 amino acids of the Na+/K+-ATPase. These variable amino-terminal 200 amino acids, when incorporated into the corresponding regions of the SR Ca2+-ATPase, conferred ouabain sensitivity to the SR Ca2+-ATPase (15). Addition of the carboxy-terminal 150 amino acids of the plasma membrane (PM) Ca2+-ATPase to the Na+/K+-ATPase a subunit conferred Ca2+/ calmodulin sensitivity on the Na+/K+-ATPase, indicating the existence of potential domains in the Na+/K+-ATPase that can interact with the carboxy terminus of the PM Ca2+-ATPase (for details, see Ishii and Takeyasu in this volume). The successful functional expression of additional chimeric ATPases will allow identification of other critical regions, such as domains responsible for targeting of distinct ATPases to the specific subcellular membranes. This section reviews our recent work on chimeric ATPases. We also address potential abilities of atomic force microscopy (AFM; for details, see Paul et al. in this volume) for analysis of molecular structures of the P-type ATPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askari, A., Huang, W.-H., McCormick, P.W. (1983) J. Biol. Chem. 258: 3453–3460.

    PubMed  CAS  Google Scholar 

  2. Blostein, R., Zhang, R.-P., Gottardi, C.J., Caplan, M.J. (1993) J. Biol. Chem. 268: 10654–10658.

    PubMed  CAS  Google Scholar 

  3. Brent, R., Ptashne, M. (1985) Cell 43: 729–736.

    Article  PubMed  CAS  Google Scholar 

  4. Canessa, C.M., Horisberger, J.-D., Louvard, D., Rossier, B.C. (1992) EMBO J. 11: 1681–1687.

    PubMed  CAS  Google Scholar 

  5. Cantley, L.G., Zhou, X.-M., Cunha, M.J., Epstein, J., Cantley, L.C. (1992) J. Biol. Chem. 267: 17271–17278.

    PubMed  CAS  Google Scholar 

  6. Capasso, J.M., Hoving, S., Tal, D.M., Goldshleger, R., Karlish, S.J.D. (1992) J. Biol. Chem. 267: 1150–1158.

    PubMed  CAS  Google Scholar 

  7. Catterall, W. (1988) Science 242: 50–61.

    Article  PubMed  CAS  Google Scholar 

  8. Clarke, D.M., Loo, T.W., Inesi, G., MacLennan, D.H. (1989) Nature 339: 476–478.

    Article  PubMed  CAS  Google Scholar 

  9. Carafoli, E. (1992) J. Biol. Chem. 267: 2115–2118.

    PubMed  CAS  Google Scholar 

  10. Eakle, K.A., Kim, K.S., Kabalin, M.A., Farley, R.A. (1992) Proc. Natl. Acad. Sci. U.S.A. 89: 2834–2838.

    Article  PubMed  CAS  Google Scholar 

  11. Fukuda, K., Kubo, T., Maeda, A., Akiba, I., Bujo, H., Nakai, J., Mishina, M., Higashida, H., Neher, E., Marty, A., Numa, S. (1989) Trends Pharmacol. Sci. (Suppl.): 4–10.

    Google Scholar 

  12. Goldshleger, R., Tal, D.M., Moorman, J., Stein, W.D., Karlish, S.J.D. (1992) Proc. Natl. Acad. Sci. U.S.A. 89: 6911–6915.

    Article  PubMed  CAS  Google Scholar 

  13. Hansen, O. (1984) Pharmacol. Rev. 36: 143–163.

    PubMed  CAS  Google Scholar 

  14. Horowitz, B., Eakle, K.A., Scheiner-Bobis, G., Randolph, G.R., Chen, C.Y., Hitzeman, R.A., Farley, R.A. (1990) J. Biol. Chem. 265: 4189–4192.

    PubMed  CAS  Google Scholar 

  15. Ishii, T. Takeyasu, K. (1993) Proc. Natl. Acad. Sci. U.S.A. In press.

    Google Scholar 

  16. Jewell, E.A., Lingrel, J.B. (1991) J. Biol. Chem. 266: 16925–16930.

    PubMed  CAS  Google Scholar 

  17. Jorgensen, P.L., Andersen, J.P. (1988) J. Membrane Biol. 103: 95–120.

    Article  CAS  Google Scholar 

  18. Jorgensen, P.L., Perterson, J. (1985) Biochim. Biophys. Acta 821: 319–333.

    Article  PubMed  CAS  Google Scholar 

  19. Jorgensen, P.L. (1974) Biochim. Biophs. Acta 356: 36–52.

    Article  CAS  Google Scholar 

  20. Karin, N.J., Kaprielian, Z., Fambrough, D.M. (1989) Mol. Cell Biol. 9: 1978–1986.

    PubMed  CAS  Google Scholar 

  21. Kaprielian, Z., Fambrough, D.M. (1987) Dev. Biol. 124: 490–503.

    Article  PubMed  CAS  Google Scholar 

  22. Karlish, S.J.D., Goldshleger, R., Stein, W.D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87: 4566–4570.

    Article  PubMed  CAS  Google Scholar 

  23. Kijima, Y., Ogunbunmi, E., Fleischer, S. (1991) J. Biol. Chem. 266: 22912–22918.

    PubMed  CAS  Google Scholar 

  24. Kobilka, B.K., Kobilka, T.-S., Daniel, K., Regan, J.W., Caron, M.G., Lefkowitz, R.J. (1988) Science (Wash. DC). 240: 1310–1316.

    Article  CAS  Google Scholar 

  25. Lemas, M.V., Takeyasu, K., Fambrough, D.M. (1992) J. Biol. Chem. 267: 20987–20991.

    PubMed  CAS  Google Scholar 

  26. Luckie, D.B., Boyd, K.L., Takeyasu, K. (1991) FEBS Lett. 281: 231–234.

    Article  PubMed  CAS  Google Scholar 

  27. Luckie, D.B., Lemas, M.V., Boyd, K.L., Fambrough, D.M., Takeyasu, K. (1992) Biophys. J. 62: 220–227.

    Article  PubMed  CAS  Google Scholar 

  28. Lutsenko, S., Kaplan, J.H. (1993) Biochemistry 32: 6737–6743.

    Article  PubMed  CAS  Google Scholar 

  29. Lytton, J., Westlin, M., Hanley, M.R. (1991) J. Biol. Chem. 266: 17067–17071.

    PubMed  CAS  Google Scholar 

  30. Maeda, M., Oshiman, K., Tamura, S., Futai, M. (1990) J. Biol. Chem. 265: 9027–9032.

    PubMed  CAS  Google Scholar 

  31. McDonough, A.A., Geering, K., Farley, R.A. (1990) FASEB. J. 4: 1598–1605.

    PubMed  CAS  Google Scholar 

  32. Mounsbach, A.B., Skriver, E., Herbert, H. (1990) The sodium pump: Recent developments, 44th annual symposium 160–172.

    Google Scholar 

  33. Noguchi, S., Mishina, M., Kawamura, M., Numa, S. (1987) FEBS Lett. 225: 27–32.

    Article  PubMed  CAS  Google Scholar 

  34. Pedemonte, C.H., Kaplan, J.H. (1990) Am. J. Physiol. 258: (cell Physiol. 27) C1–C23.

    PubMed  CAS  Google Scholar 

  35. Price, E.M., Lingrel, J.B. (1988) Biochemistry 27: 8400–8408.

    Article  PubMed  CAS  Google Scholar 

  36. Sagara, Y., Fernandez-Belda, F., Meis, L.D., Inesi, G. (1992) J. Biol. Chem. 267: 12606–12613.

    PubMed  CAS  Google Scholar 

  37. Schultheis, P.J., Lingrel, J.B. (1993) Biochemistry 32: 544–550.

    Article  PubMed  CAS  Google Scholar 

  38. Sumbilla, C., Cantilina, T., Collins, J.H., Malak, H., Lakowicz, J.R., Inesi, G. (1991) J. Biol. Chem. 266: 12682–12689.

    PubMed  CAS  Google Scholar 

  39. Sumbilla, C., Lu, L., Sagara, Y., Inesi, G., Ishii, T., Takeyasu, K., Feng, Y., Fambrough, D.M. (1993) J. Biol. Chem. 268: 21185–21192.

    PubMed  CAS  Google Scholar 

  40. Takemura, H., Hughes, A.R., Thastrup, O., Putney, J.W.Jr. (1989) J. Biol. Chem. 264: 12266–12271.

    PubMed  CAS  Google Scholar 

  41. Takeyasu, K., Tamkun, M.M., Siegel, N., Fambrough, D.M. (1987) J. Biol. Chem. 262: 10733–10740.

    PubMed  CAS  Google Scholar 

  42. Takeyasu, K., Tamkum, M.M., Renaud, K.J., Fambrough, D.M. (1988) J. Biol. Chem. 263: 4347–4354.

    PubMed  CAS  Google Scholar 

  43. Tanabe, T., Akams, B.A., Numa, S., Beem, K.G. (1991) Nature 352: 800–803.

    Article  PubMed  CAS  Google Scholar 

  44. We thank Dr. A. Askari for providing purified dog kidney membranes, and Dr. G.K. Shull for a gift of cDNAs encoding PM Ca2+-ATPase isoforms. We also thank Dr. D.M. Fambrough for chicken-specific monoclonal antibodies and a cDNA encoding SERCA1 ATPase. M.G. is a recipient of a Post-doctoral Fellowship from the American Heart Association, Ohio Affiliate. K.T. is an Established Investigator of the American Heart Association, and has been supported by the National Institutes of Health.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Takeyasu, K. et al. (1994). Structure and Function of Ion Pumps Studied by Atomic Force Microscopy and Gene-transfer Experiments Using Chimeric Na+/K+- and Ca2+ ATPases. In: Bamberg, E., Schoner, W. (eds) The Sodium Pump. Steinkopff. https://doi.org/10.1007/978-3-642-72511-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72511-1_47

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72513-5

  • Online ISBN: 978-3-642-72511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics