Skip to main content

Endo- Exocytotic Sorting of Na+/K+-Pumps in Developing Oocytes and Embryos of Xenopus laevis

  • Chapter
The Sodium Pump
  • 24 Accesses

Abstract

Amphibian oocytes are physiologically arrested at the G2/M border of the first meiotic prophase until progesterone triggers the resumption of the meiotic cell cycle. Within a few hours, immature oocytes are transformed by a process designated meiotic maturation into mature oocytes ready to be shed and fertilized (see Ref. 9 for review). In parallel to the well known nuclear changes, a profound reorganization of the plasma membrane takes place that is reflected by a marked reduction of the surface area (8), a near complete membrane depolarization, and a downregulation of virtually all transmembrane transport systems (see Ref. 15 for review). As a consequence of these changes, the plasma membrane of mature oocytes has an extremely low ionic permeability, in contrast to the plasma membrane of immature oocytes, which exhibits high permeability for ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratoiy maintained animals. J Morphol 136:153–180

    Article  PubMed  CAS  Google Scholar 

  2. Friehs S and Schmalzing G (1993) Segregation of maternal Na+/K+-pump α1 and ß3 mRNAs to animal blastomeres of early Xenopus embryos, this volume

    Google Scholar 

  3. Geering K, Theulaz I, Verrey F, Häuptle MT, Rossier BC (1989) A role for the ß-subunit in the expression of functional Na+-K+-ATPase in Xenopus oocytes. Am J Physiol 257: C851–C858

    PubMed  CAS  Google Scholar 

  4. Good PJ, Richter K, Dawid IB (1990) A nervous system-specific isotype of the ß subunit of Na+,K+-ATPase expressed during early development of Xenopus laevis. Proc Natl. Acad Sci USA 87: 9088–9092

    Article  PubMed  CAS  Google Scholar 

  5. Grandin N, Charbonneau M (1991) Intracellular free calcium oscillates during cell division of Xenopus embryos. J Cell Biol. 112: 711–718

    Article  PubMed  CAS  Google Scholar 

  6. Han Y, Pralong-Zamofing D, Ackermann U, Geering K (1991) Modulation of Na,K-ATPase expression during early development of Xenopus laevis. Dev Biol. 145: 174–181

    Article  PubMed  CAS  Google Scholar 

  7. Jaunin P, Horisberger JD, Richter K, Good PJ, Rossier BC, Geering K (1992) Processing, intracellular transport, and functional expression of endogenous and exogenous α-ß3 Na,K-ATPase complexes in Xenopus oocytes. J Biol. Chem 267: 577–585

    PubMed  CAS  Google Scholar 

  8. Kado RT, Marcher K, Ozon R (1981) Electrical membrane properties of the Xenopus laevis oocyte during progesterone-induced meiotic maturation. Dev Biol. 84:471–476

    Article  PubMed  CAS  Google Scholar 

  9. Maller JL, Krebs EG (1980) Regulation of oocyte maturation. Curr Top Cell Regul 16: 271–311

    PubMed  CAS  Google Scholar 

  10. Müller AHJ, Gawantka V, Ding XY, Hausen P (1993) Maturation-induced internalization of ß1-integral by Xenopus oocytes and formation of the maternal integrin pool. Median Develop 42:77–88

    Article  Google Scholar 

  11. Nelson WJ, Veshnock PJ (1987) Ankyrin binding to (Na++K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature 328: 533–535

    Article  PubMed  CAS  Google Scholar 

  12. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686

    Article  PubMed  CAS  Google Scholar 

  13. Pralong-Zamofing D, Yi QH, Schmalzing G, Good P, Geering K (1992) Regulation of al-ß3 Na+/K+-ATPase isozyme during meiotic maturation of Xenopus laevis oocytes. Am J Physiol 262:C1520–C1530

    PubMed  CAS  Google Scholar 

  14. Richter HP, Jung V, Passow H (1984) Regulatory changes of membrane transport and ouabain binding during progesterone-induced maturation of Xenopus oocytes. J Membr Biol. 79: 203–210

    Article  PubMed  CAS  Google Scholar 

  15. Richter HP, Schwarz W (1991) Na+-dependent carrier transport in amphibian oocytes and its regulation during development. Comp Biochem Physiol 10: 86–103

    Google Scholar 

  16. Schmalzing G, Eckard P, Kröner S, Passow H (1990) Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes. Am J Physiol 258: C 179–C 184

    CAS  Google Scholar 

  17. Schmalzing G, Gloor S (1994) Na+/K+-pump beta-subunits: structure and functions. Cell Physiol Biochem 4: 96–114

    Article  CAS  Google Scholar 

  18. Schmalzing G, Gloor S, Omay H, Kröner S, Appelhans H, Schwarz W (1991) Up-regulation of sodium pump activity in Xenopus laevis oocytes by expression of heterologous ß1 subunits of the sodium pump. Biochem J 279: 329–336

    PubMed  CAS  Google Scholar 

  19. Schmalzing G, Kröner S (1990) Micromolar free calcium exposes ouabain binding sites in digitonin-permeabilized Xenopus laevis oocytes. Biochem J 269: 757–766

    PubMed  CAS  Google Scholar 

  20. Schmalzing G, Kröner S, Passow H (1989) Evidence for intracellular sodium pumps in permeabilized Xenopus laevis oocytes. Biochem J 260: 395–399

    PubMed  CAS  Google Scholar 

  21. Schmalzing G, Kröner S, Schachner M, Gloor S (1992) The adhesion molecule on glia (AMOG/ß2) and α1 subunits assemble to functional sodium pumps in Xenopus oocytes. J Biol. Chem 267:20212–21216

    PubMed  CAS  Google Scholar 

  22. Schmalzing G, Mådefessel K, Haase W and Geering K (1991) Evidence for protein kinase C-induced internalization of sodium pumps in Xenopus laevis oocytes. In: De Weer P Kaplan JH (eds) The Sodium Pump: Recent Developments. Rockefeller University Press, New York, pp 465–470

    Google Scholar 

  23. Slack C, Warner AE (1973) Intracellular and intercellular potentials in the early amphibian embryo. J Physiol Lond 232: 313–330

    PubMed  CAS  Google Scholar 

  24. Steinhardt RA, Epel D, Carroll Jun EJ, Yanagimachi R (1974) Is calcium ionophore a universal activator for unfertilized eggs? Nature 252: 41–43

    Article  PubMed  CAS  Google Scholar 

  25. Vasilets LA, Schmalzing G, Mådefessel K, Haase W, Schwarz W (1990) Activation of protein kinase C by phorbol ester induces down-regulation of the Na+/K+-ATPase in oocytes of Xenopus laevis. J Membr Biol. 118: 131–142

    Article  PubMed  CAS  Google Scholar 

  26. Verrey F, Kairouz P, Schaerer E, Fuentes P, Geering K, Rossier BC, Kraehenbuhl J-P (1989) Primary sequence of Xenopus laevis Na+-K+-ATPase and its localization in A6 kidney cells. Am J Physiol 256: F1034–F1043

    PubMed  CAS  Google Scholar 

  27. Weinstein SP, Kostellow AB, Ziegler DH, Morrill GA (1982) Progesterone-induced downregulation of an electrogenic Na+,K+-ATPase during the first meiotic division in amphibian oocytes. J Membr Biol. 69: 41–48

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Schmalzing, G. (1994). Endo- Exocytotic Sorting of Na+/K+-Pumps in Developing Oocytes and Embryos of Xenopus laevis . In: Bamberg, E., Schoner, W. (eds) The Sodium Pump. Steinkopff. https://doi.org/10.1007/978-3-642-72511-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72511-1_27

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72513-5

  • Online ISBN: 978-3-642-72511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics