Skip to main content

Regulation of the Na+/K+-pump proteins in skeletal muscle: Acute effects of insulin on α2 distribution and muscle fibre-type specific expression of β subunits

  • Chapter
The Sodium Pump

Abstract

Insulin is a major anabolic hormone that plays a pivotal role in K+ homeostasis. A decrease in plasma K+ concentration is mentioned in the first reports of insulin effects on the whole organism. The hormone enhances active K+ uptake by extra-renal tissues, primarily muscle and liver (1). This response can be observed rapidly in isolated cell preparations such as excised muscle (2,3) and isolated hepatocytes (4). In isolated skeletal muscle, adipocytes and cardiocytes, addition of insulin results in a rapid hyperpolarization (5). This action has been mainly ascribed to a rapid stimulation of the Na+/K+-pump (6,7). In addition to incrementing K+ uptake and storage, the stimulation of the pump by insulin results in Na+ extrusion that is necessary to maintain low cytosolic levels of this cation, which would otherwise increase due to the simultaneous stimulation by the hormone of Na+-coupled amino acid uptake and Na+/H+ countertransport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bia M, DeFronzo RA. Am J Physiol 240: F257–F268, 1981

    PubMed  CAS  Google Scholar 

  2. Erlij D, Grinstein S. J Physiol 259: 13–31, 1976

    PubMed  CAS  Google Scholar 

  3. Clausen T, Kohn PG. J Physiol 265: 19–42, 1977

    PubMed  CAS  Google Scholar 

  4. Fehlmann M, Freychet P. J Biol Chem 256: 7449–7453, 1981

    PubMed  CAS  Google Scholar 

  5. Czech MP. Annu Rev Biochem 46: 359–384, 1977

    Article  PubMed  CAS  Google Scholar 

  6. Moore RD. J Physiol 232: 23–42, 1973

    PubMed  CAS  Google Scholar 

  7. Gavryck WA, Moore RD, Thompson RC. J Physiol 252: 43–58, 1975

    PubMed  CAS  Google Scholar 

  8. Rosic NK, Standaert ML, Pollet RJ. J Biol. Chem 260: 6206–6212, 1985

    PubMed  CAS  Google Scholar 

  9. Gelehrter TD, Shreve PD, Dilworth VM. Diabetes 33: 428–434, 1984

    Article  PubMed  CAS  Google Scholar 

  10. Lytton J, Lin JC, Guidotti G. J Biol. Chem 260: 1177–1184, 1985

    PubMed  CAS  Google Scholar 

  11. Brodsky JL. Am J Physiol (Cell Physiol) 258: C812–C817, 1990

    CAS  Google Scholar 

  12. Resh MD. J Biol. Chem 257: 11946–11952, 1982

    PubMed  CAS  Google Scholar 

  13. Lytton J. J Biol. Chem 260: 10075–10080, 1985

    PubMed  CAS  Google Scholar 

  14. Resh MD, Nemenoff RA, Guidotti G. J Biol. Chem 255: 10938–10945, 1980

    PubMed  CAS  Google Scholar 

  15. McGill DL, Guidotti G. J Biol. Chem 266: 15824–15831, 1991

    PubMed  CAS  Google Scholar 

  16. McGill DL. J Biol Chem 266: 15817–15823, 1991

    PubMed  CAS  Google Scholar 

  17. Weil E, Sasson S, Gutman Y. Am J Physiol 261: C224–C230, 1991

    PubMed  CAS  Google Scholar 

  18. Clausen T, Flatman JA. Am J Physiol 252: 338: 163–181, 1987

    Google Scholar 

  19. Grinstein S, Erlij D. Nature (Lond) 251: 57–58, 1974

    Article  CAS  Google Scholar 

  20. Omatsu-Kanbe M, Kitasato H. Biochem J 246: 583–588, 1987

    PubMed  CAS  Google Scholar 

  21. Omatsu-Kanbe M, Kitasato H. Biochem J 272: 727–733, 1990

    PubMed  CAS  Google Scholar 

  22. Hundal H, Marette A, Mitsumoto Y, Ramlal T, Klip A. J Biol. Chem 267: 5040–5043, 1992

    PubMed  CAS  Google Scholar 

  23. Marette A, Krischer J, Lavoie L, Ackerley C, Carpentier J-L, Klip A. Am J Physiol, in press, 1993

    Google Scholar 

  24. Hundal H, Marette A, Ramlal T, Liu Z, Klip A. FEBS Letts 328: 253–258, 1993

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Klip, A., Lavoie, L., Marette, A., Hundal, H., Ackerley, C., Carpentier, J.L. (1994). Regulation of the Na+/K+-pump proteins in skeletal muscle: Acute effects of insulin on α2 distribution and muscle fibre-type specific expression of β subunits. In: Bamberg, E., Schoner, W. (eds) The Sodium Pump. Steinkopff. https://doi.org/10.1007/978-3-642-72511-1_160

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72511-1_160

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72513-5

  • Online ISBN: 978-3-642-72511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics