Advertisement

Serum Replacement in Culture of Human Erythroid and Megakaryocytic Precursors

  • G. Vinci
  • N. Casadevall
  • C. Lacombe
  • J. Chapman
  • W. Vainchenker
  • B. Varet
  • J. Breton-Gorius
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Iscove et al. (1) have recently, succeeded in the complete replacement of serum for cloning of murine CFU-E. In the cultures, serum was replaced by albumin, iron saturated transferrin and lipids prepared as liposomes. Aye et al. (2) could also replace the serum in human cultures. The source of lipids was low density lipoproteins (LDL). In this work, first we have used the method described by Aye et al. (2) to compare the erythropoietin (Epo) sensitivity of normal and polycythemia vera (PV) erythroid progenitors. Indeed, it has been demonstrated that in serum cultures, a part of the PV erythroid progenitors differentiates without Epo addition while their normal counterparts have an absolute Epo requirement (3,4,5). These PV spontaneous colonies can be either Epo independent or exquisitely sensitive to the hormone present in the serum (6). Results of this study have been already published (7). Second, we have preliminary tried to replace the serum in the human megakaryocyte (MK) colony assay. However, this technique was not serum free since the semi solid medium consisted of bovine plasma clot. A part of the results has been published elsewhere (8).

Keywords

Polycythemia Vera Saturated Transferrin Serum Free Culture Erythroid Progenitor Semi Solid Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iscove NN, Guilbert LJ, Weyman C, Exp. Cell Res. 126: 121, 1980PubMedCrossRefGoogle Scholar
  2. 2.
    Aye MT, Seguin JA, McBurney JP, J. Cell Phys. 99: 233, 1979CrossRefGoogle Scholar
  3. 3.
    Prchal JF, Axelrad AA, N. Engl. J. Med. 290: 1392, 1974Google Scholar
  4. 4.
    Eaves CJ, Eaves AC, Blood 52: 1196, 1978PubMedGoogle Scholar
  5. 5.
    Lacombe C, Casadevall N, Varet B, Brit. J. Haematol. 44: 189, 1980CrossRefGoogle Scholar
  6. 6.
    Zanjani ED, Lutton JD, Hoffmann R et al. J. Clin. Invest. 59: 841, 1977PubMedCrossRefGoogle Scholar
  7. 7.
    Casadevall N, Vainchenker W, Lacombe C et al. Blood 59: 447, 1982PubMedGoogle Scholar
  8. 8.
    Vainchenker W, Chapman J, Deschamps JF et al. Exp. Hemat. 650, 1982Google Scholar
  9. 9.
    Guilbert LJ, Iscove NN, Nature 263: 594, 1976PubMedCrossRefGoogle Scholar
  10. 10.
    Chapman J, Goldstein S, Lagrange D et al. Lipid Res. 22: 339, 1981Google Scholar
  11. 11.
    Vainchenker W, Deschamps JF, Bastin JM et al. Blood 59: 514, 1982PubMedGoogle Scholar
  12. 12.
    Zucker S, Lysik RM, Chikkappa G et al. Exp. Hemat. 8: 895, 1980PubMedGoogle Scholar
  13. 13.
    Messner HA, Jamal N, Izaguirre J Cell Phys. (suppl. 1 ) 45, 1982CrossRefGoogle Scholar
  14. 14.
    Kanz L, Straub G, Bross KG et al. Blut, 45: 267, 1982PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • G. Vinci
    • 1
  • N. Casadevall
    • 2
  • C. Lacombe
    • 2
  • J. Chapman
    • 3
  • W. Vainchenker
    • 1
  • B. Varet
    • 2
  • J. Breton-Gorius
    • 1
  1. 1.INSERM, U.91Hôpital Henri MondorCreteilFrance
  2. 2.INSERM, U.152Hôpital CochinParisFrance
  3. 3.INSERM, U.35Hôpital Henri MondorCreteilFrance

Personalised recommendations