Skip to main content

Dihydrofolate Reductase Inhibitors

  • Chapter
Antimalarial Drug II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 68 / 2))

Abstract

While exploring structural variations of anilinopyrimidines with antimalarial activity, a group at Imperial Chemical Industries found that certain biguanides synthesised as ring-opened analogues possessed good activity against Plasmodium gallinaceum infections in chicks (Curd et al. 1945). Later, a group at Burroughs Wellcome who were testing various types of pyrimidines as inhibitors of nucleic acid synthesis pointed out a formal structural analogy between the most active of the biguanides, proguanil (chlorguanide), and a 2,4-diamino-5-aryloxypyrimidine which was a folic acid antagonist (Falco et al 1949). Soon after this, it was discovered that proguanil is cyclised metabolically to a dihydrotriazine, an active metabolite which is a folic acid antagonist (Carrington et al. 1951). Eventually, it was shown that the diaminopyrimidine, pyrimethamine, and the dihydrotriazine, cycloguanil, share a common locus of action — the powerful, selective inhibition of the activity of malarial dihydrofolate reductase (Ferone et al. 1969). Thus, one compound which was inadvertently synthesised as a prodrug and another which derived from a programme of synthesis of untargeted antimetabolites, together stand as prime examples of chemotherapeutic exploitation of species differences of isofunctional enzymes. These drugs have experienced 3 decades of widescale use for the prophylaxis and suppression of human malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson I, Morse LM (1966) The influence of solvent on the teratogenic effect of folic acid antagonist in the rat. Exp Mol Pathol 5:134–145

    Article  PubMed  CAS  Google Scholar 

  • Armstrong VL (1973) Metabolism of chlorguanide, a unique mixed function oxidase substrate. Diss Abstr 33:382B

    Google Scholar 

  • Armstrong VL, Smith CC (1974) Cyclization and N-dealkylation of chlorguanide by rabbit and rat hepatic microsomes. Toxicol appl Pharmacol 29:90

    Google Scholar 

  • Black RH (1973) Malaria in the Australian army in South Vietnam. Successful use of a proguanil-dapsone combination for chemoprophylaxis of chloroquine-resistant falciparum malaria. Med J Aust 1:1265–1270

    PubMed  CAS  Google Scholar 

  • Blakley RL (1969) The biochemistry of folic acid and related pteridines. North Holland, Amsterdam

    Google Scholar 

  • Bruce-Chwatt U (1977) Prevention and treatment of malaria. Trop Doct 7:17–20

    PubMed  CAS  Google Scholar 

  • Canfield CJ, Keller HI, Cirksena WJ (1971) Erythrokinetics during treatment of acute falciparum malaria. Milit Med 136:354–357

    CAS  Google Scholar 

  • Carrington HC, Crowther AF, Davey DG, Levi AA, Rose FL (1951) A metabolite of Paludrine with high antimalarial activity. Nature 168:1080

    Article  PubMed  CAS  Google Scholar 

  • Castles TR, Kintner LD, Lee C-C (1971) The effects of folic or folinic acid on the toxicity of pyrimenthamine in dogs. Toxicol Appl Pharmacol 20:447–459

    Article  PubMed  CAS  Google Scholar 

  • Cavallito JC, Nichol CA, Brenckman WD Jr, DeAngelis RL, Stickney DR, Simmons WS, Sigel CW (1978) Lipid soluble inhibitors of dihydrofolate reductase. 1. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab Dispos 6:329–337

    PubMed  CAS  Google Scholar 

  • Chaudhuri RN, Chakravarty NK, Chaudhuri MNR (1952) Chemotherapy and chemoprophylaxis of malaria. Br Med J 1:568–574

    Article  PubMed  CAS  Google Scholar 

  • Chebotar NA (1974) Embryotoxic and teratogenic action of proguanil, chlorproguanil and cycloguanil in rats. Byull Eksp Biol Med 77:56–57

    CAS  Google Scholar 

  • Coatney GR (1952) Studies on the compound 50–63. Trans R Soc Trop Med Hyg 46:496–497

    Article  Google Scholar 

  • Coatney GR, Myatt AV, Hernandez T, Jeffrey GM, Cooper WC (1953) Studies on human malaria XXXII. The protective and therapeutic effects of pyrimethamine (Daraprim®) against Chesson strain vivax malaria. Am J Trop Med Hyg 2:777–787

    PubMed  CAS  Google Scholar 

  • Cohn VH (1965) Inhibition of histamine methylation by antimalarial drugs. Biochem Pharmacol 14:1686–1688

    Article  PubMed  CAS  Google Scholar 

  • Contacos PG (1969) The treatment of malaria infection. Bull NY Acad Med 45:1077–1085

    CAS  Google Scholar 

  • Covell G, Shute PG, Maryon M (1953) Pyrimethamine (Daraprim) as a prophylactic against a West African strain of P. falciparum. Br Med J 1:1081–1083

    Article  PubMed  CAS  Google Scholar 

  • Cox GB, Sugden K (1977) Determination of pyrimethamine, ethopabate and sulfaquinoxaline in poultry feeding stuffs by high-performance liquid chromatography using a weak cation-exchange column packing. Analyst 102:29–34

    Article  PubMed  CAS  Google Scholar 

  • Crowther AF, Levi AA (1953) Proguanil:isolation of metabolite with high antimalarial activity. Br J Pharmacol Chemother 8:93–97

    PubMed  CAS  Google Scholar 

  • Curd FHS, Davey DG, Rose FL (1945) Studies on antimalarial drugs. X. Some biguanide derivatives as new types of antimalarial substances with both therapeutic and causal prophylactic activity. Ann Trop Med Parasitol 39:208–216

    PubMed  CAS  Google Scholar 

  • Cutting W (1962) Antifertility effects of biguanides. Antibiot Chemother 12:671–675

    PubMed  CAS  Google Scholar 

  • DeAngelis RL, Simmons WS, Nichol CA (1975) Quantitative thin-layer chromatography of pyrimethamine and related diaminopyrimidines in body fluids and tissues. J Chromatogr 106:41–49

    Article  PubMed  CAS  Google Scholar 

  • Dem RJ, Beutler E, Arnold J, Lorincz A, Block M, Alving AS (1955) Toxicity studies of pyrimethamine ( Daraprim ). Am J Trop Med Hyg 4:217–220

    Google Scholar 

  • Duch DS, Dowers S, Edelstein M, Nichol CA (1979) Histamine:elevation of brain levels by inhibition of N-methyltransferase. In Usdin E, Burchardt RT, Creveling CR (eds) Transmethylation. Elsevier North Holland, New York, pp 287–295

    Google Scholar 

  • Fairley NH, Blackburn CRB, Mackerras MJ, Gregory TS, Tonge JI, Black RH, Lemerle TH, Ercole QN, Pope KG, Dunn SR, Swann MSA, Abhurst TAF (1946) Researches on Paludrine (M4888) in malaria:an experimental investigation undertaken by the L.H.Q. Medical Research Unit (A.I.F.), Cairns, Australia. Trans R Soc Trop Med Hyg 40:105–162

    Article  PubMed  CAS  Google Scholar 

  • Falco, EA, Hitchings GH, Russell PB, Vanderwerff H (1949) Antimalarials as antagonists of purines and pteroylglutamic acid. Nature 164:107–108

    Article  PubMed  CAS  Google Scholar 

  • Falco EA, Goodwin LG, Hitchings GH, Rollo IM, Russell PB (1951) 2,4-diaminopyrimidines — a new series of antimalarials. Br J Pharmacol 6:185–200

    CAS  Google Scholar 

  • Ferone R (1970) Dihydrofolate reductase from pyrimethamine-resistant Plasmodium berg-hei. J Biol Chem 245:850–854

    PubMed  CAS  Google Scholar 

  • Ferone R (1977) Folate metabolism in malaria. Bull WHO 55:291–298

    PubMed  CAS  Google Scholar 

  • Ferone R, Roland S (1980) Dihydrofolate reductase:thymidylate synthase, a bifunctional polypeptide from Crithidia fasciculata. Proc Natl Acad Sci USA 77:5802–5806

    Article  PubMed  CAS  Google Scholar 

  • Ferone R, Burchall JJ, Hitchings GH (1969) Plasmodium berghei dihydrofolate reductase. Isolation, properties and inhibition by antifolates. Mol Pharmacol 5:49–59

    PubMed  CAS  Google Scholar 

  • Foy H, Kondi A (1952) Effect of Daraprim on the gametocytes of Plasmodium falciparum Trans R Soc Trop Med Hyg 46:370

    Article  Google Scholar 

  • Gage JC, Rose FL (1946) The estimation of Paludrine in urine. Ann Trop Med Parasitol 40:333–336

    PubMed  CAS  Google Scholar 

  • Greenberg J (1949a) Inhibition of the antimalarial activity of chlorguanide by pteroylglutamic acid. Proc Soc Exp Biol Med 71:306–308

    PubMed  CAS  Google Scholar 

  • Greenberg J (1949b) The potentiation of the antimalarial activity of chlorguanide by paminobenzoic acid competitors. J Pharmacol Exp Ther 97:238–242

    PubMed  CAS  Google Scholar 

  • Greenberg J (1953) Reversal of the activity of chlorguanide against Plasmodium gallinaceum by free or conjugated p-aminobenzoic acid. Expt Parasitol 2:271–279

    Article  CAS  Google Scholar 

  • Gutteridge WE, Trigg PI (1971) Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro. Parasitology 62:431–444

    Article  PubMed  CAS  Google Scholar 

  • Hamilton L, Philips FS, Sternberg SS, Clarke DC, Hitchings GH (1954) Hematological effects of certain 2,4-diaminopyrimidines, antagonists of folic acid metabolism. Blood 9:1062–1081

    PubMed  CAS  Google Scholar 

  • Hawking F (1947) Activation of Paludrine in vitro. Nature 159:409

    Article  PubMed  CAS  Google Scholar 

  • Hill J (1963) Chemotherapy of malaria. Part 2. The antimalarial drugs. In: Schnitzer RJ, Hawking F (eds) Experimental chemotherapy, vol I. Academic New York, pp 513–601

    Google Scholar 

  • Hitchings GH (1960) Pyrimethamine. The use of an antimetabolite in the chemotherapy of malaria and other infections. Clin Pharmacol Ther 1:570–589

    CAS  Google Scholar 

  • Hitchings GH (1978) The metabolism of plasmodia and the chemotherapy of malarial infections. In: Wood C (ed) Tropical medicine from romance to reality. Academic London, pp 79–98

    Google Scholar 

  • Hitchings GH, Burchall JJ (1965) Inhibition of folate biosyntheses and function as a basis for chemotherapy. Adv Enzymol 27:417–468

    PubMed  CAS  Google Scholar 

  • Hitchings GH, Falco EA, Vanderwerff H, Russell PB, Elion GB (1952) Antagonists of nucleic acid derivatives. VII. 2,4-diaminopyrimidines. J Biol Chem 199:43–56

    PubMed  CAS  Google Scholar 

  • Hubbell JP, Henning ML, Grace ME, Nichol CA, Sigel CW (1978) N-oxide metabolites of the 2,4-diaminopyrimidine inhibitors of dihydrofolate reductase, trimethoprim, pyrimethamine and metoprine. In: Garrod JW (ed) Biological oxidation of nitrogen. Elsevier-North Holland Biomedical, New York, pp 177–182

    Google Scholar 

  • Hubbell JP, Kao JC, Sigel CW, Nichol CA (1980) Sex-dependent disposition of metoprine in mice. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease, vol II. pp 1620-1621 The American Society for Microbiology Washington DC

    Google Scholar 

  • Hurly MGD (1959) Administration of pyrimethamine with folic and folinic acids in human malaria. Trans R Soc Trop Med Hyg 53:410–411

    Article  PubMed  CAS  Google Scholar 

  • Jones CR, King LA (1968) Detection and fluorescent measurement of pyrimethamine in urine. Biochem Med 2:251–259

    Article  CAS  Google Scholar 

  • Jones CR, Ovenell SM (1979) Determination of plasma concentrations of dapsone, monoacetyl dapsone and pyrimethamine in human subjects dosed with Maloprim J Chromatogr 163:179–185

    CAS  Google Scholar 

  • Kan SC, Siddiqui WA (1979) Comparative studies on dihydrofolate reductases from Plasmodium falciparum and Aotus trivirgatus. J Protozool 26:660–664

    PubMed  CAS  Google Scholar 

  • Levin EM, Meyer RB JR, Levin VA (1978) Quantitative high-pressure liquid chromatographic procedure for the determination of plasma and tissue levels of 2,4-diamino-5(3,4-dichlorophenyl)-6-methyl-pyrimidine (metoprine) and its application to the measurement of brain capillary permeability coefficients. J Chromatogr 156:181–187

    Article  PubMed  CAS  Google Scholar 

  • Lorz DC, Lee GP, Hitchings GH (1951) Distribution of 2,4-diamino-pyrimidine in the tissues of the dog. Fed Proc 10:320

    Google Scholar 

  • Maegraith BG, Tottey M, Adams ARD, Andrews WHH, King JD (1946) The absorption and excretion of Paludrine in the human subject. Ann Trop Med Parasitol 40:493–506

    PubMed  CAS  Google Scholar 

  • McCormick GJ, Canfield CJ, Willet GP (1971) Plasmodium knowlesi:In vitro evaluation of antimalarial activity of folic acid inhibitors. Exp Parasitol 30:88–93

    Google Scholar 

  • Morbidity and Mortality Weekly Report (1980) Plasmodium falciparum malaria contracted in Thailand resistant to chloroquine and sulfonamide-pyrimethamine. Morbid Mortal Weekly Rep 29:493–495

    Google Scholar 

  • Morley D, Woodland M, Cuthbertson WFJ (1964) Controlled trial of pyrimethamine in pregnant women in an African village. Br Med J 1:667–668

    Article  PubMed  CAS  Google Scholar 

  • Morse LM, Pinckaers M, Houg JG (1976) The effect of 5-formyltetrahydrofolic acid on pyrimethamine-induced congenital abnormalities in the rat. Nutr Rep Int 13:93–99

    CAS  Google Scholar 

  • Myatt AV, Hernandez T, Coatney GR (1953) Studies on human malaria XXXIII. The toxicity of pyrimethamine ( Daraprim) in man. Am J Trop Med Hyg 2:788–794

    Google Scholar 

  • Omar MS, Collins WE, Contacous PG (1974) Gametocytocidal and sporontocidal effects of antimalarial drugs on malaria parasites. II. Action of the folic reductase inhibitors, chlorguanide, and pyrimethamine against Plasmodium cynomolgi. Exp Parasitol 36:167–177

    Article  PubMed  CAS  Google Scholar 

  • Peters W (1970) Chemotherapy and drug resistance in malaria. Academic London

    Google Scholar 

  • Peters W, Davies EE, Robinson BL (1975) The chemotherapy of malaria, XXIII Causal prophylaxis, part II:practical experience with Plasmodium yoelii nigeriensis in drug screening. Ann Trop Med Parasitol 69:311–328

    PubMed  CAS  Google Scholar 

  • Platzer EG (1972) Metabolism of tetrahydrofolate in Plasmodium lophurae and duckling erythrocytes. Trans NY Acad Sci 34:200–208

    CAS  Google Scholar 

  • Reid VE, Friedkin M (1973) Thymidylate synthetase in mouse erythrocytes infected with Plasmodium berghei. Mol Pharmacol 9:74–80

    PubMed  CAS  Google Scholar 

  • Ritshel WA, Hammer GV, Thompson GA (1978) Pharmacokinetics of antimalarials and proposals for dosage regimens. Int J Clin Pharmacol Biopharm 16:395–401

    Google Scholar 

  • Rollo IM (1955) The mode of action of sulfonamides, proguanil and pyrimethamine on Plasmodium gallinaceum. Br J Pharmacol 10:208–214

    CAS  Google Scholar 

  • Rollo IM (1965) Drugs used in the chemotherapy of malaria. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 3rd edn. Macmillan, New York pp 1087–1127

    Google Scholar 

  • Schellenberg KA, Coatney GR (1961) The influence of antimalarial drugs on nucleic acid synthesis of Plasmodium gallinaceum and Plasmodium berghei. Biochem Pharmacol 6:143–152

    Article  PubMed  CAS  Google Scholar 

  • Schmidt LH, Genther CS (1953) The antimalarial properties of 2,4-diamino-5-p-chlorophenyl-6-ethylpyrimidine ( Daraprim ). J Pharmacol Exp Ther 107:61–91

    Google Scholar 

  • Schmidt LH, Hughes HB, Smith CC (1947) On the pharmacology of N-para-chloro-phenylN-isopropylbiguanide ( Paludrine ). J Pharmacol Exp Ther 90:233–253

    Google Scholar 

  • Schmidt LH, Hughes HB, Schmidt IG (1953) The pharmacological properties of 2,4-diamino-5-p-chlorophenyl-6-ethylpyrimidine ( Daraprim ). J Pharmacol Exp Ther 107:92–130

    Google Scholar 

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43:453–495

    PubMed  CAS  Google Scholar 

  • Shute PG, Maryon M (1954) The effect of pyrimethamine (Daraprim) on the gametocytes and oocysts of Plasmodium falciparum and Plasmodium vivax. Trans R Soc Trop Med Hyg 48:50–63

    Article  PubMed  CAS  Google Scholar 

  • Simmons WS, DeAngelis RL (1973) Quantitation of pyrimethamine and related diaminopyrimidines in situ by enhancement of fluorescence after thin-layer chromatography. Anal Chem 45:1538–1540

    Article  PubMed  CAS  Google Scholar 

  • Smith CC, Ihrig J (1957) The pharmacological basis for the prolonged antimalarial activity of pyrimethamine. Am J Trop Med Hyg 6:50–57

    PubMed  CAS  Google Scholar 

  • Smith CC, Schmidt LH (1963) Observations on the absorption of pyrimethamine from the gastrointestinal tract. Exp Parasitol 13:178–185

    Article  PubMed  CAS  Google Scholar 

  • Smith CC, Ihrig J, Menne R (1961) Antimalarial activity and metabolism of biguanides. I. Metabolism of chlorguanide and chlorguanide triazine in rhesus monkeys and man. Am J Trop Med 10:694–703

    Google Scholar 

  • Spinks A, Tottey M (1945) Studies of synthetic antimalarial drugs. XII. Determination of N’-p-chlorophenyl-N5-methyl-N5-isopropylbiguanide (4430) and Nlp-chlorophenylN5-isopropylbiguanide (Paludrine):a preliminary report. Ann Trop Med Parasitol 39:220–224

    PubMed  CAS  Google Scholar 

  • Sullivan GE, Takacs E (1971) Comparative teratogenicity of pyrimethamine in rats and hamsters. Teratology 4:205–210

    Article  CAS  Google Scholar 

  • Terzakis JA (1971) Plasmodium gallinaceum:Drug-induced ultrastructural changes in oocysts. Exp Parasitol 30:260–266

    Google Scholar 

  • Terzian LA, Stahler N, Dawkins AT Jr (1968) The sporogonous cycle of Plasmodium vivax in anopheles mosquitoes as a system for evaluating the prophylactic and curative capabilities of potential antimalarial compounds. Exp Parasitol 23:56–66

    Article  PubMed  CAS  Google Scholar 

  • Thiersch JB (1954) Effect of certain 2,4-diamino-pyrimidine antagonists of folic acid on pregnancy and rat fetus. Proc Soc Exp Biol Med 85:571–577

    Google Scholar 

  • Thurston JP (1950) Action of Proguanil on P. berghei. Inhibition by p-aminobenzoic acid. Lancet 259–438

    Google Scholar 

  • Tong MJ, Strickland GT, Votteri BA, Gunning J-J (1970) Supplemental folates in the therapy of Plasmodium falciparum malaria. JAMA 214:2330–2333

    Article  PubMed  CAS  Google Scholar 

  • Tonkin IM (1946) The testing of drugs against erythrocytic forms of P. gallinaceum in vitro. Br J Pharmacol 1:163–173

    CAS  Google Scholar 

  • Tottey M, Maegraith BG (1948) Field method of estimating Paludrine in urine. Trans R Soc Trop Med Hyg 41:438–439

    Google Scholar 

  • Walsh CJ, Sherman IW (1968) Purine and pyrimidine synthesis by the avian malaria parasite, Plasmodium lophurae. J Protozool 15:763–770

    PubMed  CAS  Google Scholar 

  • Walter RD, Mühlpfordt H, Königk F (1970) Vergleichende Untersuchungen der Deoxythymidylatsynthase bei Plasmodium chabaudi, Trypanosoma gambiense und Trypanosoma lewisi. Z. Tropenmed Parasitol 21:347–357

    PubMed  CAS  Google Scholar 

  • Wood RC, Hitchings GH (1959) Effect of pyrimethamine on folic acid metabolism in Streptococcus faecalis and Escherichia coli. J Biol Chem 234:2377–2380

    PubMed  CAS  Google Scholar 

  • World Health Organization (1965) Resistance of malaria parasites to drugs. WHO Tech. Rep Ser 296

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferone, R. (1984). Dihydrofolate Reductase Inhibitors. In: Peters, W., Richards, W.H.G. (eds) Antimalarial Drug II. Handbook of Experimental Pharmacology, vol 68 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69254-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69254-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69256-7

  • Online ISBN: 978-3-642-69254-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics