Skip to main content

The Role of Neuronal-Glial Cell Interaction During Brain Development

  • Conference paper
Neuronal-glial Cell Interrelationships

Part of the book series: Dahlem Workshop Reports Life Sciences Research Report ((DAHLEM LIFE,volume 20))

Abstract

Recent immunocytochemical studies using glial specific marker show that neuronal and glial cell classes coexist in the developing primate brain earlier than has hitherto been assumed, and that they originate from separate precursors that are present in the proliferative zones. DNA labeling indicates that one transient subclass — the radial glial cells — does not divide for about two months during the peak period of neurogenesis. During this period their elongated processes may play a crucial role in the compartmentalization of the nervous system and may serve as guides for migrating neurons as they traverse the distance between their sites of origin near the ventricular surface and their final destinations. The cellular mechanisms responsible for this movement, as well as the possible involvement of glial fibers in the formation of extracellular spaces and in the transfer of information and/or nutrients via intracytoplasmic transport during development, remain to be clarified. At somewhat later stages the astrocytes that are produced directly from glial precursors or by a morphogenetic transformation from radial glial cells, construct the membrana limitans gliae that forms the brain surface, separate differentiating neurons during synaptogenesis, and remove degenerating cells, axons, and synaptic terminals. Genetic or acquired abnomalities of glial cells may impair the completion of the normal developmental process and lead to various brain abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bray, D. 1973. Model for membrane movements in the growth cone. Nature 244: 93–96.

    Article  PubMed  CAS  Google Scholar 

  2. Caviness, V.S., Jr., and Rakic, P. 1978. Mechanisms of cortical development: a view from mutations in mice. Ann. Rev. Neurosci. 1: 297–326.

    Article  PubMed  Google Scholar 

  3. Chu-Wang, I-W., Oppenheim, R.W., and Furel, P. 1980. Ultrastructure of migrating spinal motoneurons in anurian larvae. Brain Res., in press.

    Google Scholar 

  4. Eng, L.F., and Rubenstein, L.J. 1978. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J. Histochem. Cytochem. 26: 513–522.

    Article  PubMed  CAS  Google Scholar 

  5. Fujita, D. 1963. The matrix cell and cytogenesis in the developing central nervous system. J. Comp. Neur. 120: 37–42.

    Article  PubMed  CAS  Google Scholar 

  6. Fujita, S. 1966. Application of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain. In Evolution of the Forebrain. Phylogenesis and Ontogenesis of the Forebrain, eds. R. Hassler and H. Stephen, pp. 180–196, Stuttgart: Thieme.

    Google Scholar 

  7. Gona, A.G. 1978. Ultrastructural studies on cerebellar histogenesis in the frog: The external granular layer and the molecular layer. Brain Res. 153: 435–447.

    Article  PubMed  CAS  Google Scholar 

  8. Gottlieb, D.E., and Glaser, L. 1980. Cellular recognition during neural development. Ann. Rev. Neurosc. 3: 303–318.

    Article  CAS  Google Scholar 

  9. His, W. 1889. Die Neurobasten und deren Entstehung im embryonalen Mark. Abh. Math. Phys. CI. Kgl. Sach. Ges. Wiss. 15: 313–372.

    Google Scholar 

  10. Ivy, G.W., and Killackey, H.P. 1978. Transient population of glial cells in developing rat telencephalon revealed by horseradish peroxidase. Brain Res. 158: 213–218.

    Article  PubMed  CAS  Google Scholar 

  11. Kuffler, S.W., and Nicholls, J.G. 1966. The physiology of neuroglial cells. Ergeb. Physiol. 57: 1–90.

    PubMed  CAS  Google Scholar 

  12. Levitt, P., Cooper, M.L., and Rakic, P. 1981. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. J. Neurosc., in press.

    Google Scholar 

  13. Levitt, P.R., and Rakic, P. 1980. Immunoperoxidase localization of glial fibrillary acid protein in the embryonic rhesus monkey. J. Comp. Neur. 193: 815–840.

    Article  PubMed  CAS  Google Scholar 

  14. Mugnaini, E., and Forstrnen, P.F. 1967. Ultrastructural studies on the differentiation of granule cells and development of Glomeruli in the chick embryo. Z. Zellforsch. 77: 115–143.

    Article  PubMed  CAS  Google Scholar 

  15. Nowakowski, R.S., and Rakic, P. 1979. The mode of migration of neurons to the hippocampus: A Golgi and electron microscopic analysis in fetal rhesus monkey. J. Neurocytol. 8: 697–718.

    Article  PubMed  CAS  Google Scholar 

  16. Oksche, A. 1968. Die pranatale und vergleichende Entwicklungsgeschichte der Neuroglia. Acta Neuropathologica, Suppl. 4: 4–19.

    Google Scholar 

  17. Rakic, P. 1971. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J. Comp. Neur. 141: 283–312.

    Article  PubMed  CAS  Google Scholar 

  18. Rakic, P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neur. 145: 61–84.

    Article  PubMed  CAS  Google Scholar 

  19. Rakic, P. 1974. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183: 425–427.

    Article  PubMed  CAS  Google Scholar 

  20. Rakic, P. 1978. Neuronal migration and contact guidance in primate telencephalon. Postgrad. Med. J. 54: 25–40.

    PubMed  Google Scholar 

  21. Rakic, P., and Sidman, R.L. 1973. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J. Comp. Neur. 152: 103–132.

    Article  PubMed  CAS  Google Scholar 

  22. Rakic, P., Stensaas, L.J., Sayre, E.P., and Sidman, R.L. 1974. Computer aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of fetal monkey brain. Nature 250: 31–34.

    Article  PubMed  CAS  Google Scholar 

  23. Rothman, T.P., Gershon, M.D., and Holtzer, H. 1978. The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev. Biol. 65: 322–341.

    Article  PubMed  CAS  Google Scholar 

  24. Rutter, W.J., Pictet, R.L., and Morris, P.W. 1973. Toward molecular mechanisms of developmental processes. Ann. Rev. Biochem. 42: 601–646.

    Article  PubMed  CAS  Google Scholar 

  25. Sauer, F.C. 1935. Mitosis in the Neural Tube. J. Comp. Neur. 62: 377–405.

    Article  Google Scholar 

  26. Schaper, A. 1897. Die friihesten Differenzierungsvorgange im Central nervensystem. Arch. Entwickl.-Mech. Orig. 5: 81–132.

    Google Scholar 

  27. Schmechel, D.E., and Rakic, P. 1979. Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature (London) 277: 303–305.

    Article  CAS  Google Scholar 

  28. Schmechel, D.E., and Rakic, P. 1979. A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat. Embryol. 156: 115–152.

    Article  PubMed  CAS  Google Scholar 

  29. Sidman, R.L., Maile, I.L., and Feder, N. 1959. Cell proliferation in the primitive ependymal zone, an autoradio-graphic study of histogenesis in the nervous system. Exp. Neurol. 1: 322–333.

    Article  PubMed  CAS  Google Scholar 

  30. Singer, M, Nordlander, R.H., and Egar, M. 1979. Axonal guidance embryogenesis and regeneration in the spinal cord of the newt: The blueprint hypothesis of neural pathway patterning. J. Comp. Neur. 185: 1–22.

    Article  PubMed  CAS  Google Scholar 

  31. Sommer, I., Lovenauer, C, and Schachner, M. 1981. Selective recognition of Bergmann glial and ependymal cells in the mouse nervous system by monoclonal antibody.

    Google Scholar 

  32. Sotelo, C., and Changeux, J.P. 1974. Bergmann fibers and granular cell migration in the cerebellum of homozygous weaver mutant mouse. Brain Res. 77: 484–491.

    Article  PubMed  CAS  Google Scholar 

  33. Stensaas, L.J. 1972. An electronmicroscopic study of the organization of the cerebral cortex of the 60mm rabbit embryo. Z. Anat. Entwickl.-Gesch. 137: 335.

    Article  CAS  Google Scholar 

  34. Sternberger, L.A., Hardy, P.H., Cuculis, J.J., and Meyer, H.G. 1970. The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti-horseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem. 18: 315–383.

    Article  PubMed  CAS  Google Scholar 

  35. Subteberg, S., and Wessels, N.K., eds. 1980. The Cell Surface: Mediator of Developmental Processes. New York: Academic Press.

    Google Scholar 

  36. Varon, S.S., and Somjen, G.G. 1979. Neuron-glial interaction. Neurosc. Res. Prog. Bull. 17: 47–65.

    Google Scholar 

  37. Weiss, P. 1947. The problems of specificity in growth and development. Yale J. Biol. Med. 19: 235–278.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. A. Sears

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Rakic, P. (1982). The Role of Neuronal-Glial Cell Interaction During Brain Development. In: Sears, T.A. (eds) Neuronal-glial Cell Interrelationships. Dahlem Workshop Reports Life Sciences Research Report, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68466-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68466-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68468-5

  • Online ISBN: 978-3-642-68466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics