Skip to main content

Cell Interactions and the Cytoskeleton

  • Conference paper
Neuronal-glial Cell Interrelationships

Part of the book series: Dahlem Workshop Reports Life Sciences Research Report ((DAHLEM LIFE,volume 20))

  • 36 Accesses

Abstract

The cytoskeleton is traditionally identified as the organelle of cellular motility. A long list of experiments suggests that that function is in part performed by a transmembrane connection, linking the cell surface and the cytoskeleton. The structural and molecular bases for that connection are not known. Recent studies of the cytoskeleton itself, concentrating on in situ analysis, have provided new approaches to this problem. They have altered our view of cytoskeletal organization and expanded the possible functions of the transmembrane connection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertini, D.F., and Clark, J.I. 1975. Membrane-microtubule interactions: Conconavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc. Nat. Acad. Sci. 12: 4976–4980.

    Article  Google Scholar 

  2. Albrecht-Bühler, G. 1977. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell 12: 333–339.

    Article  Google Scholar 

  3. Ash, J.F., Louvard, D., and Singer, S.J. 1977. Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts. Proc. Nat. Acad. Sci. 74: 5584–5588.

    Article  PubMed  CAS  Google Scholar 

  4. Benecke, B.-J., Ben-Ze’ev, A., and Penman, S. 1978. The control m-RNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell 14: 931–939.

    Article  PubMed  CAS  Google Scholar 

  5. Bennett, V., and Stenbuck, P. 1979. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 254: 2533–2541.

    PubMed  CAS  Google Scholar 

  6. Bennett, V., and Stenbuck, P. 1979. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280: 468–473.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Ze’ev, A., Farmer, S.R., and Penman, S. 1980. Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell 21: 365–372.

    Article  PubMed  Google Scholar 

  8. Black, M., and Lasek, R.J. 1980 Slow components of axonal transport: two cytoskeletal networks. J. Cell Biol. 86: 616–623.

    Article  PubMed  CAS  Google Scholar 

  9. Bloch, R.J., and Geiger, B. 1980. The localization of acetylcholine recepter clusters in areas of cell-substrate contact in cultures of rat myotubes. Cell 21: 25–36.

    Article  PubMed  CAS  Google Scholar 

  10. Bolinski, J.C., and Borisy, G.G. 1980. Immunofluorescence localization of HeLa cell maps on microtubules in vitro and in vivo. J. Cell Biol, in press.

    Google Scholar 

  11. Bretscher, A., and Weber, K. 1979. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc. Nat. Acad. Sci. 75: 2321–2325.

    Article  Google Scholar 

  12. Bretscher, A., and Weber, K. 1980. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J. Cell Biol. 86: 335–340.

    Article  PubMed  CAS  Google Scholar 

  13. Bretscher, A., and Weber, K. 1980. Villin is a major protein of the microvillus cytoskeleton which binds both F and F actin in a calcium-dependent manner. Cell 20: 839–847.

    Article  PubMed  CAS  Google Scholar 

  14. Burridge, K., and Feramisco, J. 1980. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19: 587–595.

    Article  PubMed  CAS  Google Scholar 

  15. Byers, H.R., and Porter, K.R. 1977. Transformation in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. J. Cell Biol. 75: 541–558.

    Article  PubMed  CAS  Google Scholar 

  16. Carter, S.B. 1967. Haptotoxis and the mechanism of cell motility. Nature 213: 256–267.

    Article  PubMed  CAS  Google Scholar 

  17. Clarke, M., and Spudich, J. 1977. Nonmuscle contractile proteins. Ann. Rev. Biochem. 46: 797–822.

    Article  PubMed  CAS  Google Scholar 

  18. Connolly, J.A., Kalnins, V.I., Cleveland, D.W., and Kirschner, M.W. 1977. Immunofluorescent staining of cytoplasm and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc. Nat. Acad. Sci. 74: 2437–2440.

    Article  PubMed  CAS  Google Scholar 

  19. Connolly, J.A., Kalnins, V.I., Cleveland, D.W., and Kirschner, M.W. 1978. Intercellular localization of the high molecular weight microtubule accessory protein by immunofluorescence. J. Cell Biol. 76: 781–786.

    Article  PubMed  CAS  Google Scholar 

  20. Duerr, A., Pallas, D., and Solomon, F. 1980. Molecular analyses of cytoplasmic microtubules. J. Cell Biol., in press.

    Google Scholar 

  21. Dustin, P. 1978. Microtubules. Berlin: Springer Verlag.

    Google Scholar 

  22. Eckert, B.S., Koons, S.J., Schontz, A.W., and Zokel, C. R. 1980. Association of creatine phospholinase with the cytoskeleton of cultured mammalian cells. J. Cell Biol. 86: 1–5.

    Article  PubMed  CAS  Google Scholar 

  23. Edelman, G.M. 1976. Surface modulation in cell recognition and growth. Science 192: 218–226.

    Article  PubMed  CAS  Google Scholar 

  24. Ellisman, M. 1981. Beyond microtubules and microfilaments. In Cytoarchitecture of the Nervous System, eds. R. Lasek and M. Shelanski. Neurosciences Research Program, in press.

    Google Scholar 

  25. Folkman, J., and Greenspan, H. 1975. Influence of geometry on control of cell growth. Biochim. Biophys. Acta 417: 211–236.

    PubMed  CAS  Google Scholar 

  26. Folkman, J., and Moscona, A. 1978. Role of cell shape in growth control. Nature 273: 345–349.

    Article  PubMed  CAS  Google Scholar 

  27. Geiger, B. 1979. A 130K protein from chicken gizzard: its localization at the termination of microfilament bundles in cultured chicken cells. Cell 18: 193–205.

    Article  PubMed  CAS  Google Scholar 

  28. Geiger, B., and Singer, J. 1980. Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence. Proc. Nat. Acad. Sci. 77: 4769–4773.

    Article  PubMed  CAS  Google Scholar 

  29. Gerisch, G. 1968. Zell Aggregation bei Dyctiostelium. Curr. Top. Dev. Bio. 3: 157–197.

    Article  CAS  Google Scholar 

  30. Goldman, R.D., and Knipe, D. 1972. Functions of cytoplasmic fibers in non-muscle cells. Cold Spring Harbor Symp. Quant. Biol. 37: 523–534.

    Google Scholar 

  31. Heaysman, J., and Pegrum, S. 1973. Early contacts between fibroblasts. An ultrastructural study. Exp. Cell Res. 78: 71–78.

    Article  PubMed  CAS  Google Scholar 

  32. Heuser, J.E., and Kirschner, M. 1980. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J. Cell Biol. 86: 212–234.

    Article  PubMed  CAS  Google Scholar 

  33. Hoffman, P.N., and Lasek, R.J. 1975. The slow component of axonal transport. J. Cell Biol. 66: 351–366.

    Article  PubMed  CAS  Google Scholar 

  34. Hynes, R.O. 1981. Relationships between fibronectin and the cytoskeleton. In Cell Surface Reviews, eds. G. Poste and G. Nicolson, vol. 7. New York: Alan R. Liss, in press.

    Google Scholar 

  35. Hynes, R.O., and Destree, A.T. 1978. Relationship between fibronectin and actin. Cell 15: 875–886.

    Article  PubMed  CAS  Google Scholar 

  36. Hynes, R.O., and Destree, A.T. 1978. 10 nm filaments in normal and transformed cells. Cell 13: 151–163.

    Article  PubMed  CAS  Google Scholar 

  37. Ishikawa, H., Bischoff, R., and Holtzer, H. 1968. Mitosis and intermediate sized filaments in developing skeletal muscle. J. Cell Biol. 38: 538–555.

    Article  PubMed  CAS  Google Scholar 

  38. Jorgenson, A.O., Subrahmanyan, L., Turnbull, C., and Kalnins, V.I. 1976. Localization of the neurofilament protein in neuroblastoma cells by immunofluorescent staining. Proc. Nat. Acad. Sci. 73: 3192–3196.

    Article  Google Scholar 

  39. Lasek, R. 1981. Axonal transport. In The Cytoskeleton and the Architecture of Nervous Systems, eds. R. Lasek and M. Shelanski. Cambridge, MA: Neurosciences Research Program, in press.

    Google Scholar 

  40. Lasek, R.J., Solomon, F., and Brinkley, B.R. 1981. Organizing centers: the form and transport of cell skeletons. In the Cytoskeleton and the Architecture of Nervous Systems, eds. R. Lasek and M. Shelanski. Cambridge, MA: Neurosciences Research Program, in press.

    Google Scholar 

  41. Lazarides, E. 1980. Intermediate filaments as mechanical integrators of cellular space. Nature 283: 249–255.

    Article  PubMed  CAS  Google Scholar 

  42. Lenk, R., and Penman, S. 1979. The cytoskeletal framework and poliovirus metabolism. Cell 16: 289–301.

    Article  PubMed  CAS  Google Scholar 

  43. Loor, F. 1976. Cell surface design. Nature 264: 272–273.

    Article  PubMed  CAS  Google Scholar 

  44. Luby, K., and Porter, K.R. 1980. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements. Cell 21: 13–23.

    Article  PubMed  CAS  Google Scholar 

  45. Lux, S.E. 1979. Spectrinactin membrane skeleton of normal and abnormal red blood cells. Semin. Hematol. 16: 21–51.

    PubMed  CAS  Google Scholar 

  46. MacPerson, I., and Montagnier, L. 1964. Anchoragedependent growth of normal cells. Virology 23: 291–294.

    Article  Google Scholar 

  47. McClain, D.A., and Edelman, G.M. 1980. Density-dependent stimulation and inhibition of cell growth by agents that disrupt microtubules. Proc. Nat. Acad. Sci. 77: 2748–2752.

    Article  PubMed  CAS  Google Scholar 

  48. Nicholls, J.G., ed. 1979. The Role of Intercellular Signals: Navigation, Encounter, Outcome. Weinheim, New York: Verlag Chemie.

    Google Scholar 

  49. Nicolson, G.L. 1976. Transmembrane control of the receptors on normal and cancer cells. I. Cytoplasmic influence over cell surface components. Biochim. Biophys. Acta 457: 57–108.

    PubMed  CAS  Google Scholar 

  50. Nicolson, G.L. 1976. Transmembrane control of the receptors on normal and cancer cells. II. Surface changes associated with transformation and malignancy. Biochim. Biophys. Acta 458: 1–72.

    PubMed  CAS  Google Scholar 

  51. Oliver, J.M., Ukena, T.E., and Berlin, R.D. 1974. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites in cell surfaces. Proc. Nat. Acad. Sci. 71: 394–398.

    Article  PubMed  CAS  Google Scholar 

  52. Otto, A.M., Zumbe, A., Gibson, L., Kubler, A.-M., and Jimenez de Asuce, L. 1979. Colchicine enhances the effect of growth factors on 3T3 cells. Proc. Nat. Acad. Sci. 76: 6435–6438.

    Article  PubMed  CAS  Google Scholar 

  53. Pollard, T.D., and Fujiwara, K. 1976. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J. Cell Biol. 71: 848–875.

    Article  PubMed  Google Scholar 

  54. Sanes, J.S., Marshall, L.M., and McMahon, D.J. 1978. Reinnervation of muscle fiber basal lamina after removal of myofibres. J. Cell Biol. 78: 176–198.

    Article  PubMed  CAS  Google Scholar 

  55. Sherline, P., and Shiavone, K. 1977. Immunofluorescent localization of high molecular weight proteins along intracellular microtubules. Science 198: 1038–1040.

    Article  PubMed  CAS  Google Scholar 

  56. Singer, I.I. 1979. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16: 675–685.

    Article  PubMed  CAS  Google Scholar 

  57. Solomon, F. 1980. Neuroblastoma cells recapitulate their detailed neurite morphologies after reversible microtubule disassembly. Cell 21: 333–338.

    Article  PubMed  CAS  Google Scholar 

  58. Solomon, F., Magendantz, M., and Salzman, A. 1979. Identification with cellular microtubules of one of the co-assembling microtubule-associated proteins. Cell 18: 431–438.

    Article  PubMed  CAS  Google Scholar 

  59. Weiss, P. 1958. Cell contact. Int. Rev. Cytol. 7: 1217–1221.

    Google Scholar 

  60. Wolosewick, J., and Porter, K.R. 1979. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J. Cell Biol. 82: 114–139.

    Article  PubMed  CAS  Google Scholar 

  61. Zieve, G., and Solomon, F. 1980. Identification of a 120K dalton protein associated with microtubules of the mitotic spindle. J. Cell Biol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. A. Sears

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Solomon, F. (1982). Cell Interactions and the Cytoskeleton. In: Sears, T.A. (eds) Neuronal-glial Cell Interrelationships. Dahlem Workshop Reports Life Sciences Research Report, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68466-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68466-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68468-5

  • Online ISBN: 978-3-642-68466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics