Skip to main content

Cellular and Non-Cellular Influences on Myelin-Forming Cells

  • Conference paper
Neuronal-glial Cell Interrelationships

Part of the book series: Dahlem Workshop Reports Life Sciences Research Report ((DAHLEM LIFE,volume 20))

Abstract

Both the cause of the breakdown of the oligodendrocyte-myelin unit in multiple sclerosis lesions and the reasons for the failure of repair by remyelination are unknown. In many experimental demyelinating conditions of the central nervous system substantial remyelination by oligodendrocytes is observed, in others Schwann cells may provide myelin of the peripheral type within central neural tissues. The precise environmental requirements for the production of myelin by oligodendrocytes have not been defined. Studies utilizing separated (and recombined) populations of Schwann cells, sensory neurons, and fibroblasts in tissue culture indicate that: 1) axonal contact provides a mitogenic signal for Schwann cells, 2) axonal contact engenders Schwann cell production of certain collagenous products, 3) secretory activity by Schwann cells appears to be necessary for the expression of Schwann cell function, and 4) long-term cultures containing only neurons and Schwann cells in serum-containing medium will not myelinate unless embryo extract is added in the culture medium or a population of fibroblasts is present in the culture dish. These observations on Schwann cells suggest that the expression of oligodendrocyte function may also have complex, as yet undefined, microenvironmental requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo, A.J., Charron, L., and Bray, G.M. 1976. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J. Neurocytol. 5: 565–573.

    Article  PubMed  CAS  Google Scholar 

  2. Aguayo, A.J., Dickson, R., Trecarten, J., Attiwell, M., Bray, G.M., and Richardson, P. 1978. Ensheathment and myelination of regenerating PNS fibres by transplanted optic nerve glia. Neurosci. Lett. 9: 97–104.

    Article  PubMed  CAS  Google Scholar 

  3. Andrews, J.M. 1972. The ultrastructural neuropathy of multiple sclerosis. In Multiple Sclerosis, Immunology, Virology and Ultrastructure, eds. F. Wolfgram, G.W. Ellison, J.G. Stevens, and J.M. Andrews. New York: Academic Press.

    Google Scholar 

  4. Asbury, A.K. 1975. The biology of Schwann cells. In Peripheral Neuropathy, eds. P.J. Dyck, P.K. Thomas, and E.H. Lambert, pp. 201–212. Philadelphia: W.B. Saunders.

    Google Scholar 

  5. Blakemore, W.F. 1977. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266: 68–69

    Article  PubMed  CAS  Google Scholar 

  6. Blakemore, W.F. 1978. Observation on remyelination in rabbit spinal cord following demyelination induced by lysolecithin. Neuropathol. & Appl. Neurobiol. 4: 47–59.

    CAS  Google Scholar 

  7. Bloom, B.R., Ju, G., Brosnan, C., Cammer, W., and Norton, W. 1978. Notes on the pathogenesis of multiple sclerosis. Neurology 28: 93–101.

    PubMed  CAS  Google Scholar 

  8. Bottenstein, J.E., and Sato, G.H. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. (USA) 76: 514–517.

    Article  CAS  Google Scholar 

  9. Bradley, W.B., and Jenkison, M. 1973. Abnormalities of peripheral nerve in murine muscular dystrophy. J. Neurol. Sci. 18: 227–247.

    Article  PubMed  CAS  Google Scholar 

  10. Bunge, M.B., Williams, A.K., Wood, P.M., Uitto, J., and Jeffrey, J.J. 1980. Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis of basal lamina and collagen formation. J. Cell Biol. 84: 184–202.

    Article  PubMed  CAS  Google Scholar 

  11. Bunge, R.P., and Bunge, M.B. 1978. Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers. J. Cell Biol. 78: 943–950.

    Article  PubMed  CAS  Google Scholar 

  12. Copio, D.S., and Bunge, M.B. 1980. Use of a proline analogue to disrupt collagen synthesis prevents normal Schwann cell differentiation. J. Cell Biol. 87: 114.

    Article  Google Scholar 

  13. Duncan, I.D., Aguayo, A.J., Bunge, R.P., and Wood, P. 1979. Transplantation of rat Schwann cells cultured in vitro into demyelinated areas of the mouse spinal cord. Soc. Neurosci. Abstr. 5: 510.

    Google Scholar 

  14. Fulcrand, J., and Privat, A. 1977. Neuroglial reactions secondary to wallerian degeneration in the optic nerve of the postnatal rat: Ultrastructural and quantitative study. J. Comp. Neurol. 176: 189–224.

    Article  PubMed  CAS  Google Scholar 

  15. Gilmore, S.A., and Duncan, D. 1968. On the presence of peripheral-like nervous and connective tissue within irradiated spinal cord. Anat. Rec. 160: 675–690.

    Article  PubMed  CAS  Google Scholar 

  16. Herndon, R.M., Price, D.L., and Weiner, L.P. 1977. Regeneration of oligodendria during recovery from demyelinating disease. Science 195: 693–694.

    Article  PubMed  CAS  Google Scholar 

  17. Jaros, E., and Bradley, W.G. 1979. Atypical axon-Schwann cell relationships in the common peroneal nerve of the dystrophic mouse: an ultrastructural study. Neuropathol. & Appl. Neurobiol. 5: 33–147.

    Google Scholar 

  18. McCarthy, K.D., and deVellis, J. 1980. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85: 890–902.

    Article  PubMed  CAS  Google Scholar 

  19. McCarthy, K.D., and Partlow, L.M. 1976. Neuronal stimulation of 3H-thymidine incorporation by primary cultures of highly purified non-neuronal cells. Brain Res. 114: 415–426

    Article  PubMed  CAS  Google Scholar 

  20. Mirsky, R., Winter, J., Abney, E.R., Pruss, R.M., Gavrilovic, J., and Raff, M.C. 1980. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J. Cell Biol. 84: 483–494.

    Article  PubMed  CAS  Google Scholar 

  21. Moya, F., Bunge, M.B., and Bunge, R.P. 1980. Schwann cells proliferate but fail to differentiate in defined medium. Proc. Natl. Acad. Sci. (USA) 77: 6902–6906.

    Article  CAS  Google Scholar 

  22. Okada, E., Bunge, R.P., and Bunge, M.B. 1980. Abnormalities expressed in long tern cultures of dorsal root ganglia from the dystrophic mouse. Brain Res. 194: 455–470.

    Article  PubMed  CAS  Google Scholar 

  23. Prineas, J. 1975. Pathology of the early lesion in multiple sclerosis. Hum. Pathol. 6: 531–554.

    Article  PubMed  CAS  Google Scholar 

  24. Prineas, J.W., and Connell, F. 1978. The fine structure of chronically active multiple sclerosis plaques. Neurol. 28: 68–75.

    CAS  Google Scholar 

  25. Prineas, J.W., and Connell, F. 1979. Remyelination in multiple sclerosis. Ann. Neurol. 5: 22–31.

    Article  PubMed  CAS  Google Scholar 

  26. Raff, M., Abney, E., Brockes, J., and Hornby-Smith. A. 1978, Schwann cell growth factors. Cell 15: 813–822.

    Article  PubMed  CAS  Google Scholar 

  27. Raine, C.S. 1976. On the occurrence of Schwann cells within the normal central nervous system. J. Neurocytol. 5: 371–380.

    Article  PubMed  CAS  Google Scholar 

  28. Raine, C.S. 1977. The etiology and pathogenesis of multiple sclerosis: recent developments. Pathobiol. Annual 7: 347–384.

    CAS  Google Scholar 

  29. Salzer, J.L., Bunge, R.P. 1980. Studies of Schwann cell proliferation: I. An analysis in tissue culture of pro¬liferation during development, Wallerian degeneration, and direct injury. J. Cell Biol. 84: 739–752.

    Article  PubMed  CAS  Google Scholar 

  30. Salzer, J.L., Bunge, R.P., and Glaser, L. 1980. Studies of Schwann cell proliferation: III. Evidence for the surface localization of the neurite mitogen. J. Cell Biol. 84: 767–778.

    Article  PubMed  CAS  Google Scholar 

  31. Salzer, J.L., Williams, A.K., Glaser, L., and Bunge, R.P. 1980. Studies of Schwann cell proliferations II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J. Cell Biol. 84: 753–766.

    Article  PubMed  CAS  Google Scholar 

  32. Seil, F.J. 1977. Tissue culture studies of demyelinating diseases a critical review. Ann. Neurol. 2: 345–355.

    Article  PubMed  CAS  Google Scholar 

  33. Skoff, P. 1976. Myelin deficit in the Jimpy mouse may be due to cellular abnormalities in astroglia. Nature 264: 560–562.

    Article  PubMed  CAS  Google Scholar 

  34. Webster, H. de F. 1975. Development of peripheral myelinated and unmyelinated nerve fibers. In Peripheral Neuropathy, eds. Webster, H. de F, pp. 37–61. Philadelphias Saunders.

    Google Scholar 

  35. Weinberg, H., and Spencer, P. 1975. Studies of myelinogenesis, I. Myelination of regenerating axons after entry into a foreign unmyelinated nerve. J. Neurocytol. 4: 395–418.

    Article  PubMed  CAS  Google Scholar 

  36. Wisniewski, H.M., and Bloom, B.R. 1975. Primary demyelination as a nonspecific consequence of a cell-mediated immune reaction. J. Exp. Med. 141: 346–359.

    Article  PubMed  CAS  Google Scholar 

  37. Wood, P.M. 1976. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 115: 361–375.

    Article  PubMed  CAS  Google Scholar 

  38. Wood, P.M., and Bunge, R.P. 1975. Evidence that sensory axons are mitogenic for Schwann cells. Nature 265: 662–664.

    Article  Google Scholar 

  39. Wood, P.M., and Bunge, R. 1980. Dorsal root ganglion neurons stimulate differentiation and myelin formation by oligodendrocytes derived from embryonic spinal cord. Abstr. Soc. Neurosci. 6: 379.

    Google Scholar 

  40. Wood, P., Okada, E., and Bunge, R. 1980. The use of networks of dissociated rat dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture. Brain Res. 196: 247–252.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

T. A. Sears

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Bunge, R.P. (1982). Cellular and Non-Cellular Influences on Myelin-Forming Cells. In: Sears, T.A. (eds) Neuronal-glial Cell Interrelationships. Dahlem Workshop Reports Life Sciences Research Report, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68466-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68466-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68468-5

  • Online ISBN: 978-3-642-68466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics