Skip to main content

Chemistry of Cyclic Nucleotides and Cyclic Nucleotide Analogs

  • Chapter
Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 1))

Abstract

Since the isolation and characterization of cAMP in early 1957, several enzymatic and chemical synthetic procedures have been developed to provide cAMP and various cyclic nucleotide analogs. The synthesis of cAMP and 2′-deoxy-cAMP by bacterial fermentation is of current commercial interest as a low cost source of nucleoside 3′,5′-cyclic phosphates. In this chapter, the improvements made over the years on the original synthesis of cAMP (via DCC mediated cyclization of AMP) by employing different coupling reagents, transesterification of “active” phosphates of AMP and isolation techniques are reviewed. By far the largest number of cyclic nuceotide derivatives have been prepared by the chemical transformation of parent cAMP and cGMP itself. A substantial number of cAMP derivates have been synthesized in which there are substituent modifications of the purine base, and structural modifications of the carbohydrate moiety and the cyclic phosphate moiety. Representative examples of cyclic nucleotide analogs related to cAMP, such as 1-deazapurine, 3-deazapurine, 7-deazapurine, 2-azapurine, 8-azapurine, formycin, and l,N6-ethenoadenosine cyclic phosphates, are treated in some detail. Description of some of the more important methods currently being used for the preparation of cyclic nucleotides related to cGMP and pyrimidine cyclic nucleotides are presented. Detailed information about the hydrolytic and spectral properties of cyclic nucleotides are also included. Due to the recent availability of an enormous number of synthetic cyclic nucleotide analogs, considerable success has been achieved in obtaining potent phosphodiesterase (PDE) inhibitors with greater tissue specificity. We now have cyclic nucleotides which are more resistant toward cellular PDE than the parent cAMP and, consequently, survive intracellularly long enough to provide an increased physiological response. An effort has been made, in the present chapter, to show that future cyclic nucleotide chemistry has the potential to provide highly potent cyclic nucleotide derivatives, which may have a significant effect on uncontrolled cellular proliferation, the immune response, asthma, the central nervous system, gastrointestinal function and other physiological responses characteristic of the natural cyclic nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Sabe M (1976) Cyclic nucleotides and the regulation of cell growth. Dowden, Hutchinson and Ross, Inc. Stroudsburg PA

    Google Scholar 

  • Agence Nationale de Valorisation de la Recherche (1972) Cyclic (iso) adenosine-3′,5′-mono-phosphoric acid. French Patent 2,112,084

    Google Scholar 

  • Akerfeldt S (1962) Further studies on S-substituted phosphorothioic acids. II. Synthesis and certain properties of some potential antiradiation drugs. Acta Chim Scand 16:1897–1907

    Article  CAS  Google Scholar 

  • Alberty RA (1969) Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J Biol Chem 244:3290–3302

    PubMed  CAS  Google Scholar 

  • Albrecht HP, Jones GH, Moffat JG (1970) 3′-Deoxy-3′-(dihydroxyphosphinylmethyl)nucleosides. Isosteric phosphonate analogs of nucleoside 3′-phosphates. J Am Chem Soc 92:5511–5513

    Article  PubMed  CAS  Google Scholar 

  • Allen LB, Boswell KH, Khwaja TA, Meyer RB Jr, Sidwell RW, Witkowski JT, Christensen LF, Robins RK (1978) Synthesis and antiviral activity of some phosphates of the broad-spectrum antiviral nucleoside, 1-β-D-ribofuranosyl-1,2,3-triazole-3-carboxamide (Ribavirin). J Med Chem 21:742–746

    Article  PubMed  Google Scholar 

  • Allen LB, Eagle NC, Huffman JH, Shuman DA, Meyer RB Jr, Sidwell RW (1974) Enhancement of interferon antiviral action in L-cells by cyclic nucleotides. Proc Soc Exp Biol Med 146:580–584

    PubMed  CAS  Google Scholar 

  • Amer MS (1975) Cyclic nucleotides in disease; on the biochemical etiology of hypertension. Life Sci 17:1021–1038

    Article  PubMed  CAS  Google Scholar 

  • Amer MS, McKinney GR (1973) Possibilities for drug development based on the cyclic AMP system. Life Sci 13:753–767

    Article  PubMed  CAS  Google Scholar 

  • Amer MS, McKinney GR (1974) Cyclic nucleotides and drug discovery. Annu Rept Med Chem 9:203–212

    Article  Google Scholar 

  • Amer MS, McKinney GR (1975) Cyclic nucleotides as mediators of drug action. Annu Rept Med Chem 10:192–201

    Article  CAS  Google Scholar 

  • Anderson WB, Johnson GS, Pastan IH (1973a) Transformation of chick-embryo fibroblasts by wild-type and temperature-sensitive Rous Sarcoma virus alters adenylate cyclase activity. Proc Natl Acad Sci USA 70:1055–1059

    Article  PubMed  CAS  Google Scholar 

  • Anderson WB, Lovelace E, Pastan I (1973 b) Adenylate cyclase activity is decreased in chick embryo fibroblasts transformed by wild type and temperature sensitive Schmidt-ruppin rous sarcoma virus. Biochem Biophys Res Commun 52:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Anderson WB, Perlman RL, Pastan I (1972) Effect of adenosine 3′,5′-monophosphate analogs on the activity of the cyclic adenosine 3′,5′-monophosphate receptor in Escherichia coli. J Biol Chem 247:2717–2722

    PubMed  CAS  Google Scholar 

  • Anisuzzaman AKM, Lake WC, Whistler RL (1973) 4′-Thioadenosine 3′,5′-cyclic phosphate and derivatives. Chemical synthesis and hydrolysis by phosphodiesterase. Biochemistry 12:2041–2045

    Article  PubMed  CAS  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′,5′-mono-phosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334

    Article  PubMed  CAS  Google Scholar 

  • Baddiley J, Buchanan JG, Szabo L (1954) Sugar phosphates. Part I. Derivatives of glucose 4:6-(hydrogen phosphate). J Chem Soc 3826–3839

    Google Scholar 

  • Baglioni C (1979) Interferon-induced enzymatic activities and their role in the antiviral state. Cell 17:255–264

    Article  PubMed  CAS  Google Scholar 

  • Baglioni C, Minks MA, Maroney PA (1978) Interferon action may be mediated by activation of a nuclease by pppA2′A2′A. Nature 273:684–687

    Article  PubMed  CAS  Google Scholar 

  • Bahr JT, Cathou RE, Hammes GG (1965) A thermodynamic study of the hydrolysis of cytidine 2′,3′-cyclic phosphate. J Biol Chem 240:3372–3378

    PubMed  CAS  Google Scholar 

  • Bald RW, Holý A (1971) Nucleic acid components and their analogues. CXLII. Preparation of 3-(β-D-ribofuranosyl)uracil 2′,3′-cyclic phosphate and related compounds and their behaviour towards pancreatic ribonuclease and ribonuclease T2. Coll Czech Chem Commun 36:3657–3669

    CAS  Google Scholar 

  • Baraniak J, Lesiak K, Stec WJ (1979) Assignment of absolute configuration at phosphorus in diastereoisomeric adenosine 3′,5′-cyclic phosphorothioates (cAMPS). Pol J Chem 53:1387–1391

    CAS  Google Scholar 

  • Barker GR, Montague MD, Moss RJ, Parsons MA (1957) Biosynthesis of polynucleotides. Part I. The mode of action of ribonuclease. J Chem Soc 3786–3793

    Google Scholar 

  • Barker GR, Foll GE (1957) Biosynthesis of polynucleotides. Part II. The synthesis and properties of phosphoryl derivatives of adenine glucoside. J Chem Soc 3794–3798

    Google Scholar 

  • Barry CD, Martin DR, Williams RJP, Xavier AV (1974) Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes. J Mol Biol 84:491–502

    Article  PubMed  CAS  Google Scholar 

  • Baschang G, Kvita V (1973) New derivatives of thymidine 3′,5′-cyclophosphate. Angew Chem (Engl) 12:71–72

    Article  CAS  Google Scholar 

  • Beaman AG, Robins RK (1962) Potential purine antagonists. XXXIII. Synthesis of chloropurines. J Appl Chem 12:432–437

    Article  CAS  Google Scholar 

  • Berger NA, Eichhorn GL (1971) Interaction of metal ions with polynucleotides and related compounds. XIV. Nuclear magnetic resonance studies of the binding of copper (II) to adenine nucleotides. Biochemistry 10:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU, Michal G, Nelboeck-Hochstetter M, Stork H, Weimann G, (Boehringer Mannheim GmbH) (1971) Antilipolytic cyclophosphate derivatives of 5-amino-1-β-D-ribosylimidazole-4-carboxamides. German Patent 2,026,040

    Google Scholar 

  • Bergmeyer HU, Nelboeck-Hochstetter M, Michal G, Muehlegger K, Weimann G, Roesch E (1972) Substituted purine ribonucleoside 3′-cyclic phosphates. Ger. Offen. 2,125,077

    Google Scholar 

  • Besancon F, Ankel H (1974) Binding of interferon to gangliosides. Nature 252:478–480

    Article  PubMed  CAS  Google Scholar 

  • Biron KK, Raska K Jr (1973) Effects of dibutyryl-cAMP on adenovirus replication in different cell lines. Virology 56:383–385

    Article  PubMed  CAS  Google Scholar 

  • Blackburn BJ, Lapper RD, Smith ICP (1973) A proton magnetic resonance study of the conformations of 3′,5′-cyclic nucleotides. J Am Chem Soc 95:2873–2878

    Article  PubMed  CAS  Google Scholar 

  • Blackburn GM, Cohen JS, Todd Lord (1964) Cyclic phosphate and phosphate triesters — A P31 N.M.R. study. Tetrahedron Lett 2873–2879

    Google Scholar 

  • Blalock JE, Stanton JD (1980) Common pathways of interferon and hormonal action. Nature 283:406–408

    Article  PubMed  CAS  Google Scholar 

  • Blecher M, Ro’Ane JT, Flynn PD (1970) Metabolism of dibutyryl cyclic adenosine 3′,5′-monophosphate during its regulation of lipolysis and glucose oxidation in isolated rat epididymal adipocytes. J Biol Chem 245:1867–1870

    PubMed  CAS  Google Scholar 

  • Bloch A, private communication

    Google Scholar 

  • Bloch A (1974) Cytidine 3′,5′-monophosphate (cyclic CMP). I. Isolation from extracts of leukemia L-1210 cells. Biochem Biophys Res Commun 58:652–659

    Article  PubMed  CAS  Google Scholar 

  • Bloch A (1975 a) Isolation of cytidine 3′,5′-monophosphate from mammalian tissues and body fluids and its effects on leukemia L-1210 cell growth in culture. Adv Cyclic Nu-cleotide Res 5:331–338

    CAS  Google Scholar 

  • Bloch A (1975 b) Uridine 3′,5′-monophosphate (cyclic UMP). I. Isolation from rat liver extracts. Biochem Biophys Res Commun 64:210–218

    Article  PubMed  CAS  Google Scholar 

  • Bloch A, Dutschman G, Maue R (1974) Cytidine 3′,5′-monophosphate (cyclic CMP). IL Initiation of leukemia L-1210 cell growth in vivo. Biochem Biophys Res Commun 59:955–959

    Article  PubMed  CAS  Google Scholar 

  • Bloch A, Hromchak R, Henderson ES (1975) Isolation of cytidine 3′,5′-monophosphate (cyclic CMP) from the urine of leukemic patients. Proc Am Assoc Cancer Res 16:191

    Google Scholar 

  • Bobek M, Whistler RL, Bloch A (1970) Preparation and activity of the 4′-thio derivatives of some 6-substituted purine nucleosides. J Med Chem 13:411–413

    Article  PubMed  CAS  Google Scholar 

  • Bobruskin ID, Gulyaev NN, Kirpichnikov MP, Severin ES, Tunitskaya VA, Florent’ev VL (1979) Nuclear magnetic resonance study of conformation of nucleotides, oligonucleotides, and their analogs in solution. I. Conformation of adenosine-3′,5′-cyclophosphate and its analogs in aqueous solutions. Mol Biol (Mosk) 13:87–95

    Google Scholar 

  • Boehringer Mannheim GmbH (1970 a) Cyclofosfaten en werkwijze voor hun bereiding. Nederland patent 6,913,671

    Google Scholar 

  • Boehringer Mannheim GmbH (1970 b) Werkwijze voor het bereiden van de op 8-planta gemodificocorde purineribofuranoside 3′,5′-cyclofosfaten. Nederland Patent 7,003,222

    Google Scholar 

  • Boehringer Mannheim GmbH (1971) Purineribofuranoside 3′,5′-cyclophosphates. British Patent 1,257,546

    Google Scholar 

  • Borden RK, Smith M (1966 a) Nucleotide synthesis. II. Nucleotide p-nitrophenyl and 2,4-dinitrophenyl esters. J Org Chem 31:3241–3246

    Article  PubMed  CAS  Google Scholar 

  • Borden RK, Smith M (1966b) Nucleotide synthesis. III. Preparation of nucleoside-3′,5′-cyclic phosphates in strong base. J Org Chem 31:3247–3253

    Article  PubMed  CAS  Google Scholar 

  • Boswell KH, Christensen LF, Shuman DA, Robins RK (1975) Synthesis of 6,8-disubstituted-9-β-D-ribofuranosyrpurine 3′,5′-cyclic phosphates. J Heterocycl Chem 12:1–9

    Article  CAS  Google Scholar 

  • Boswell KH, Miller JP, Shuman DA, Sidwell RW, Simon LN, Robins RK (1973) Synthesis and biological activity of certain carbamoyl and alkoxycarbonyl derivatives of adenosine 3′,5′-cyclic phosphate. J Med Chem 16:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Boswell KH, Robins RK (1979) The synthesis of 2-amino-6,8-disubstituted purine-9-β-D-ribofuranosyl-3′,5′-cyclic monophosphates from guanosine-3′,5′-cyclic monophosphate (c-GMP). J Carbohydr Nucleosides Nucleotides 6:359–370

    CAS  Google Scholar 

  • Boyd DB (1969) Mechanism of hydrolysis of cyclic phosphate esters. J Am Chem Soc 91:1200–1205

    Article  CAS  Google Scholar 

  • Bradbury E, Nagyvary J (1976) Preparation of 2′-thio-2′-deoxycytidine 2′,3′-phosphorothioate. Nucleic Acids Res 3:2437–2442

    PubMed  CAS  Google Scholar 

  • Brenner T, Gorin E (1978) Metabolic fate of exogenous 5′-AMP, cyclic AMP and cyclic GMP in rats. Biochem Med 20:160–166

    Article  PubMed  CAS  Google Scholar 

  • Broadus AE (1977) Clinical cyclic nucleotide research. Adv Cyclic Nucleotide Res 8:509–548

    PubMed  CAS  Google Scholar 

  • Broer Y, Fouchereau M, Rosselin G (1972) Dosages radio-immunologiques de l’AMPc et du GMPc. Preparation, purification et controle du 2′0 succinyl AMP-3′,5′-cyclique et du 2′0 succinyl-GMP-3′,5′-cyclique. CR. Acad Sci Paris 275D:619–622

    Google Scholar 

  • Brooker G, Harper JF, Teraski WL, Moylan RD (1979) Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res 10:1–33

    PubMed  CAS  Google Scholar 

  • Broom AD, Robins RK (1965) The direct preparation of 2′-O-methyladenosine from adenosine. J Am Chem Soc 87:1145–1146

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Magrath DI, Todd AR (1952) Nucleosides. Part XII. The preparation of cyclic 2′,3′-phosphates of adenosine, cytidine, and uridine. J Chem Soc 2708–2714

    Google Scholar 

  • Brown DM, Magrath DI, Sir Todd AR (1955) Nucleotides. Part XXXIV. The dydrolysis of dialkyl esters of uridine-3′ phosphate and its relevance to the question of phospho triester linkages in ribonucleic acids. J Chem Soc 4396–4401

    Google Scholar 

  • Brown DM, Todd AR (1952) Nucleotides. Part X. Some observations on the structure and chemical behaviour of the nucleic acids. J Chem Soc 52–58

    Google Scholar 

  • Brunswick DJ, Cooperman BS (1971) Photo-affinity labels for adenosine 3′,5′-cyclic monophosphate. Proc Natl Acad Sci USA 68:1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Bryan AM, Olafsson PG (1973) Calorimetric investigations of crystalline 3′,5′-cyclic nucleotides. Biopolymers 12:229–235

    Article  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterise adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Cailla H, Delaage M (1972) Succinyl derivatives of adenosine 3′,5′-cyclic monophosphate: Synthesis and purification. Anal Biochem 48:62–72

    Article  PubMed  CAS  Google Scholar 

  • Calvet M-C, Gresser I (1979) Interferon enhances the excitability of cultured neurones. Nature 278:558–560

    Article  PubMed  CAS  Google Scholar 

  • Carchman RA, Johnson GS, Pastan I, Scolnick EM (1974) Studies on the levels of cyclic AMP in cells transformed by wild-type and temperature-sensitive Kirsten sarcoma virus. Cell 1:59–64

    Article  CAS  Google Scholar 

  • Cech SY, Gross RA, Ignarro LJ (1976) Pharmacologist 18:223

    Google Scholar 

  • Cech SY, Ignarro LJ (1977) Cytidine 3′,5′-monophosphate (cyclic CMP) formation in mammalian tissues. Science 198:1063–1065

    Article  PubMed  CAS  Google Scholar 

  • Cech SY, Ignarro LJ (1978) Cytidine 3′,5′-monophosphate (cyclic CMP) formation by homogenates of mouse liver. Biochem Biophys Res Commun 80:119–125

    Article  PubMed  CAS  Google Scholar 

  • Cehovic G, Bayer M, Giao N-B (1976) Synthesis of new cyclic nucleotides and their differential stimulatory effects on thyroid function in mice. J Med Chem 19:899–903

    Article  PubMed  CAS  Google Scholar 

  • Cehovic G, Gabbal A, Marcus I, Posternak T (1971 a) Dérivés d’acide adénosine-3′,5′-phos-phorique cyclique et leur préparation. French patent 6,934,747

    Google Scholar 

  • Cehovic G, Marcus I, Posternak T (1971 b) Iso-adenosine-3′,5′-monophosphorsäure und ihre Salze. German Patent 1,944,000

    Google Scholar 

  • Cehovic G, Marcus I, Vengadabady S, Posternak T (1968) Sur la préparation de l’acide iso-adénosine-3′,5′-phosphorique (iso-AMP cyclique) et sur certaines de ses propriétés biologiques. CR Soc Phys Hist Nat 3:135–139

    CAS  Google Scholar 

  • Chawla RK, Nixon DW, Shoji M, Rudman D (1979) Plasma and urine cyclic guanosine 3′,5′-monophosphate in disseminated cancer. Ann Int Med 91:862–864

    PubMed  CAS  Google Scholar 

  • Cheng YC, Bloch A (1978) Demonstration in leukemia L-1210 cells, of a phosphodiesterase acting on 3′,5′-cyclic CMP but not on 3′,5′-cyclic AMP or 3′,5′-cyclic GMP. J Biol Chem 253:2522–2524

    PubMed  CAS  Google Scholar 

  • Cherbuliez E, Probst H, Rabinowitz J (1959) Recherches sur 1a formation et la transformation des esters XVII. Sur la formation d’esters phosphoriques cycliques et sur la vitesse d’hydrolyse de ces esters et des esters dialcoylphosphoriques. Helv Chim Acta 42:1377–1384

    Article  CAS  Google Scholar 

  • Chládek S, Nagyvary J (1972) Nucleophilic reactions of some nucleoside phosphorothioates. J Am Chem Soc 94:2079–2085

    Article  PubMed  Google Scholar 

  • Cho-Chung S (1974) In vivo inhibition of tumor growth by cyclic adenosine 3′,5′-mono-phosphate derivatives. Cancer Res 34:3492–3496

    PubMed  CAS  Google Scholar 

  • Christensen LF, Meyer RB Jr, Miller JP, Simon LN, Robins RK (1975) Synthesis and en-zymic activity of 8-acyl and 8-alkyl derivatives of guanosine 3′,5′-cyclic phosphate. Biochemistry 14:1490–1496

    Article  PubMed  CAS  Google Scholar 

  • Christensen LF, Robins RK (1976) 8-Substituted cyclic nucleotides by free radical alkylation and acylation. US Patent 3,968,101

    Google Scholar 

  • Chu SH, Shiue CY, Chu MY (1974) Synthesis and biological activity of some 8-substituted seleno cyclic nucleotides and related compounds. J Med Chem 17:406–409

    Article  PubMed  CAS  Google Scholar 

  • Chu SH, Shiue CY, Chu MY (1975) Synthesis and biological activity of some 8-substituted selenoguanosine cyclic 3′,5′-phosphates and related compounds. J Med Chem 18:559–564

    Article  PubMed  CAS  Google Scholar 

  • Chwang AK, Sundaralingam M (1973) Molecular conformation of guanosine 3′,5′-cyclic monophosphate. Nature New Biol 244:136–137

    Article  PubMed  CAS  Google Scholar 

  • Chwang AK, Sundaralingam M (1974) The crystal and molecular structure of guanosine 3′,5′-cyclic monophosphate (cyclic GMP) sodium tetrahydrate. Acta Cryst 30B:1233–1240

    Google Scholar 

  • Clark VL, Bernlohr RW (1972) Guanyl cyclase of Bacillus licheniformis. Biochem Biophys Res Commun 46:1570–1575

    Article  PubMed  CAS  Google Scholar 

  • Coffino P, Gray JW (1978) Regulation of S49 lymphoma cell growth by cyclic adenosine 3′,5′-monophosphate. Cancer Res 38:4285–4288

    PubMed  CAS  Google Scholar 

  • Collin RL (1966) The electronic structure of phosphate esters. J Am Chem Soc 88:3281–3287

    Article  PubMed  CAS  Google Scholar 

  • Cook WH, Lipkin D, Markham R (1957) The formation of a cyclic dianhydrodiadenylic acid (I) by the alkaline degradation of adenosine-5′-triphosphoric acid (II). J Am Chem Soc 79:3607–3608

    Article  CAS  Google Scholar 

  • Cotton FA, Gillen RG, Gohil RN, Hazen EE Jr, Kirchner CR, Nagyvary J, Rouse JP, Stanislowski AG, Stevens JD, Tucker PW (1975) Tumor-inhibiting properties of the neutral P-O-ethyl ester of adenosine 3′,5′-monophosphate in correlation with its crystal and molecular structure. Proc Natl Acad Sci USA 72:1335–1339

    Article  PubMed  CAS  Google Scholar 

  • Coulter CL (1968) Cyclic uridine-3′,5′-phosphate: Molecular Structure. Science 159:888–889

    Article  PubMed  CAS  Google Scholar 

  • Coulter CL (1969) The crystal and molecular structure of the triethylammonium salt of cyclic uridine-3′,5′-phosphate. Acta Cryst 25B:2055–2065

    Google Scholar 

  • Coulter CL (1970) The crystal and molecular structure of the triethylammonium salt of the cyclic uridine-3′,5′-phosphate. Corrigendum. Acta Cryst 26B:441

    Google Scholar 

  • Coulter CL (1973) Structural chemistry of cyclic nucleotides. IL Crystal and molecular structure of sodium β-cytidine 2′,3′-cyclic phosphate. J Am Chem Soc 95:570–575

    Article  PubMed  CAS  Google Scholar 

  • Coulter CL, Greaves ML (1970) Cyclic cytidine 2′,3′-phosphate: Molecular structure. Science 169:1097–1098

    Article  PubMed  CAS  Google Scholar 

  • Cox JR Jr, Wall RE, Westheimer FH (1959) Thermochemical demonstration of strain in a cyclic phosphate. Chem Ind (Lond) 929

    Google Scholar 

  • Davoren PR, Sutherland EW, Maxwell AM (1963) The cellular location of adenyl cyclase in the pigeon erythrocyte. J Biol Chem 238:3016–3023

    PubMed  CAS  Google Scholar 

  • Dekker CA, Khorana HG (1954) Carbodiimides. VI. The reaction of dicyclohexylcar-bodiimide with yeast adenylic acid. A new method for the preparation of monoesters of ribonucleoside 2′-and 3′-phosphates. J Am Chem Soc 76:3522–3527

    Article  CAS  Google Scholar 

  • DeRubertis FR, Craven P (1977) Increased guanylate cyclase activity and guanosine 3′,5′-monophosphate content of ethionone-induced hepatomas. Cancer Res 37:15–21

    PubMed  CAS  Google Scholar 

  • DeRubertis FR, Chayoth R, Field JB (1976) The content and metabolism of cyclic adenosine 3′,5′-monophosphate and cyclic guanosine 3′,5′-monophosphate in adeno-carcinoma of the human colon. J Clin Invest 57:641–649

    Article  PubMed  CAS  Google Scholar 

  • Dills WL Jr, Beavo JA, Bechtel PJ, Meyers KR, Sakai LJ, Krebs EG (1976) Binding of adenosine 3′,5′-monophosphate dependent protein kinase regulatory subunit to immobilized cyclic nucleotide derivatives. Biochemistry 15:3724–3731

    Article  PubMed  CAS  Google Scholar 

  • Dills WL Jr, Goodwin CD, Lincoln TM, Beavo JA, Bechtel PJ, Corbin JD, Krebs EG (1979) Purification of cyclic nucleotide receptor proteins by cyclic nucleotide affinity chromatography. Adv Cyclic Nucleotide Res 10:199–217

    PubMed  CAS  Google Scholar 

  • Dimroth K, Witzel H, Hülsen W, Mirbach H (1959) Über die Hydrolyse von Ribonuclein-säuren in Gegenwart von Metallhydroxyden. Ann Chem 620:94–132

    CAS  Google Scholar 

  • Drummond GI, Gilgan MW, Reiner EJ, Smith M (1964) Deoxyribonucleoside-3′,5′-cyclic phosphates. Synthesis and acid-catalyzed and enzymic hydrolysis. J Am Chem Soc 86:1626–1630

    Article  CAS  Google Scholar 

  • Drummond GI, Duncan L, Hertzman E (1966) Effect of epinephrine on Phosphorylase b kinase in perfused rat hearts. J Biol Chem 241:5899–5903

    PubMed  CAS  Google Scholar 

  • Drummond GI, Powell CA (1970) Analogues of adenosine 3′,5′-cyclic phosphate as activators of Phosphorylase b kinase and as substrates for cyclic 3′,5′-nucleotide phosphodiesterase. Mol Pharmacol 6:24–30

    PubMed  CAS  Google Scholar 

  • Drummond GI, Severson DL (1979) Cyclic nucleotides and cardiac function. Circ Res 44:145–153

    PubMed  CAS  Google Scholar 

  • Dunn DB, Hall RH (1970) Purines, pyrimidines, nucleosides and nucleotides: physical constants and spectral properties. In: Handbook of biochemistry, 2nd ed, Edit. Sober, Chemical Rubber Co., Cleveland, p G1–238

    Google Scholar 

  • Eckstein F (1968) Uridine 2′,3′-O,O-cyclophosphorothioate as substrate for pancreatic ribonuclease. FEBS Lett 2:85–86

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F (1970) Nucleoside phosphorothioates. J Am Chem Soc 92:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F, Gindl H (1968) Uridin-2′,3′-O,O-cyclothiophosphat. Chem Ber 101:1670–1673

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F, Bär H-P (1969) Enzymatic hydrolysis of adenosine 3′,5′-cyclic phos-phorothioate. Biochim Biophys Acta 191:316–321

    PubMed  CAS  Google Scholar 

  • Eckstein F, Schulz HH, Rüterjans H, Haar W, Maurer W (1972) Stereochimistry of the transesterification step of ribonuclease T1. Biochemistry 11:3507–3512

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F, Simonson LP, Bär H-P (1974) Adenosine 3′,5′-cyclic phosphorothioate: Synthe sis and biological properties. Biochemistry 13:3806–3810

    Article  PubMed  CAS  Google Scholar 

  • Egami F, Takahashi K, Uehida T (1964) Ribonuclease in taka-diastase: Properties, chemical nature, and applications. In: Davidson, Cohn (eds) Progress in nucleic acid research and molecular biology, Academic Press Inc, New York, vol 3, pp 59–101

    Google Scholar 

  • Engels J (1979) Synthesis and reactivity of guanosine 3′,5′-phosphoric acid alkyl esters. Bioorg Chem 8:9–16

    Article  CAS  Google Scholar 

  • Engels J, Pfleiderer W (1975) Nucleotide, V: Synthese und Eigenschaften von Uridin-3′,5′-cyclophosphat-triestern. Tetrahedron Lett 1661–1664

    Google Scholar 

  • Engels J, Schlaeger E-J (1977) Synthesis, structure, and reactivity of adenosine cyclic 3′,5′-phosphate benzyl triesters. J Med Chem 20:907–911

    Article  PubMed  CAS  Google Scholar 

  • Epps D, Chang IM, Sherwood E, Kimball AP (1975) Feedback inhibition by 6-methyl-thioinosine 3′,5′-cyclic monophosphate in tumor cells resistant to the nucleoside. Proc Soc Exp Biol Med 150:578–580

    PubMed  CAS  Google Scholar 

  • Eto M, Iio M, Kobayashi Y, Omura H, Eto M (1974) Syntheses of ribonucleoside 5′-S-methyl phosphorothiolates and ribonucleoside 3′,5′-cyclic phosphates from nucleosides applying a new phosphorylating agent, MTBO. Agr Biol Chem 38:2081–2092

    Article  CAS  Google Scholar 

  • Eto M, Iio M, Omura H, Eto M (1978) Direct synthesis of ribonucleoside 2′,3′-cyclic phosphate from ribonucleoside. Agr Biol Chem 42:199–200

    Article  CAS  Google Scholar 

  • Evans DB, Parham CS, Schenck MT, Laffan RJ (1976) Stimulation of myocardial contractility by a new cyclic nucleotide analog, 8-(benzylthio)-N6-n-butyladenosine cyclic 3′,5′-phosphate (SQ80122). J Cyclic Nucleotide Res 2:307–319

    PubMed  CAS  Google Scholar 

  • Falbriard J-G, Posternak T, Sutherland EW (1967) Preparation of derivatives of adenosine 3′,5′-phosphate. Biochim Biophys Acta 148:99–105

    Article  CAS  Google Scholar 

  • Fazakerley GV, Russell JC, Wolfe M (1975) Conformation of the gadolinium complexes of adenosine 3′,5′-cyclic monophosphoric acid and inosine 3′,5′-cyclic monophosphoric acid. J Chem Soc Chem Commun 527

    Google Scholar 

  • Fazakerley GV, Russell JC, Wolfe MA (1977) Determination of the syn-anti equilibrium of some purine 3′:5′-nucleotides by nuclear-magnetic-relaxation perturbation in the presence of a lanthanide-ion probe. Eur J Biochem 76:601–605

    Article  PubMed  CAS  Google Scholar 

  • Fikus M, Welfeld JK, Kazimierczuk Z, Shugar D (1974) Biochemical studies on some new analogues of adenosine-3′,5′-cyclic phosphate, including isoguanosine-3′,5′-cyclic phosphate. Acta Biochim Pol 21:465–474

    PubMed  CAS  Google Scholar 

  • Fischer E (1914) Über Phosphorsäureester des Methyl-glucosids und Theophyllin-gluco-sids. Chem Ber 47:3193–3205

    Article  CAS  Google Scholar 

  • Forrest HS, Todd AR (1950) Nucleotides. Part V. Riboflavin 5′-phosphate. J Chem Soc 3295–3299

    Google Scholar 

  • Fox JJ, Miller NC (1963) Nucleosides. XVI. Further studies of anhydronucleosides. J Org Chem 28:936–941

    Article  CAS  Google Scholar 

  • Free CA, Paik VS (1977) Adrenal steroidogenic actions of cyclic nucleotide derivatives in the rat. Endocrinology 100:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Friedman DL (1976) Role of cyclic nucleotides in cell growth and differentiation. Physiol Rev 56:652–708

    PubMed  CAS  Google Scholar 

  • Friedman RM (1977) Antiviral activity of interferons. Bacteriol Rev 41:543–567

    PubMed  CAS  Google Scholar 

  • Friedman RM (1978 a) Interferons and cancer. J Natl Cancer Inst 60:1191–1194

    PubMed  CAS  Google Scholar 

  • Friedman RM (1978 b) Interferon action and the cell surface. Pharmacol Ther pt A, 2:425–438

    CAS  Google Scholar 

  • Friedman RM, Pastan I (1969) Interferon and cyclic-3′,5′-adenosine monophosphate: potentiation of antiviral activity. Biochem Biophys Res Commun 36:735–740

    Article  PubMed  CAS  Google Scholar 

  • Friedrich VW (1963) Zur Kenntnis der Phosphorsäureester der Benzimidazolriboside. Z Naturforsch 186:455–462

    Google Scholar 

  • Fujimoto Y, Naruse M (1968) Nucleoside 3′,5′-cyclic phosphates. Japanese Patent 68 16,988

    Google Scholar 

  • Fürth JJ, Cohen SS (1967) Inhibition of mammalian DNA Polymerase by the 5′-triphos-phate of 9-β-D-arabinofuranosyladenine. Cancer Res 27:1528–1533

    PubMed  Google Scholar 

  • Fuse A, Kuwata T (1978) Inhibition of DNA synthesis and alteration of cyclic adenosine 3′,5′-monophosphate levels in RSa cells by human leukocyte interferon. J Natl Cancer Inst 60:1227–1232

    PubMed  CAS  Google Scholar 

  • Garbers DL, Suddath JL, Hardman JG (1975) Enzymatic formation of inosine 3′,5′-mono-phosphate and of 2′-deoxyguanosine 3′,5′-monophosphate. Inosinate and deoxyguany-late cyclase activity. Biochim Biophys Acta 377:174–185

    PubMed  CAS  Google Scholar 

  • Gassen HG, Witzel H (1967) Zum Mechanismus der Ribonuclease-Reaktion. 1. Die Aufgabe der Pyrimidinbase bei der Reaktion. Eur J Biochem 1:36–45

    Article  PubMed  CAS  Google Scholar 

  • Geahlen RL, Haley BE, Krebs EG (1979) Synthesis and use of 8-azidoguanosine 3′,5′-cyclic monophosphate as a photoaffmity label for cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 76:2213–2217

    Article  PubMed  CAS  Google Scholar 

  • Gericke D, Chandra P (1969) Inhibition of tumor growth by nucleoside cyclic 3′,5′-mono-phosphates. Hoppe-Seylers Z Physiol Chem 350:1469–1471

    Article  PubMed  CAS  Google Scholar 

  • Gerlt JA, Gutterson NI, Datta P, Belleau B, Penney CL (1980a) Thermochemical identification of the structural factors responsible for the thermodynamic instability of 3′,5′-cyclic nucleotides. J Am Chem Soc 102:1655–1660

    Article  CAS  Google Scholar 

  • Gerlt JA, Gutterson NI, Drews RE, Sokolow JA (1980b) Conformational properties of 5-alkoxy and 5-alkyl substituted trimethylene phosphates in solution. J Am Chem Soc 102:1665–1670

    Article  CAS  Google Scholar 

  • Gerlt JA, Westheimer FH, Sturtevant JM (1975) The enthalpies of hydrolysis of acyclic, monocyclic, and glycoside cyclic phosphate diesters. J Biol Chem 250:5059–5067

    PubMed  CAS  Google Scholar 

  • Gerster JF, Hinshaw BC, Robins RK, Townsend LB (1968) Purine nucleosides. XIX. The synthesis of certain 8-chloropurine nucleosides and related derivatives. J Org Chem 33:1070–1073

    Article  PubMed  CAS  Google Scholar 

  • Gerster JF, Robins RK (1966) Purine nucleosides XIII. The synthesis of 2-fluoro and 2-chloroinosine and certain derived purine nucleosides. J Org Chem 31:3258–3262

    Article  PubMed  CAS  Google Scholar 

  • Giarrusso FF, Robins RK, unpublished results

    Google Scholar 

  • Gillen RG, Nagyvary J (1976) Some biochemical properties of alkyl phosphotriesters of cyclic AMP. Biochem Biophys Res Commun 68:836–840

    Article  PubMed  CAS  Google Scholar 

  • Gibson DW, Beer M, Barrnett RJ (1971) Gold (III) complexes of adenine nucleotides. Biochemistry 10:3669–3679

    Article  PubMed  CAS  Google Scholar 

  • Glaudemans CPJ, Fletcher HG Jr (1963) Syntheses with partially benzylated sugars. III. A simple pathway to a “ds-nucleoside,” 9-β-D-arabinofuranosyladenine (spongo-adenosine). J Org Chem 28:3004–3006

    Article  CAS  Google Scholar 

  • Gohil RN, Gillen RG, Nagyvary J (1974) Synthesis and properties of some cyclic AMP alkyl phosphotriesters. Nucleic Acids Res 1:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ML, Burke GC, Morris HP (1975 a) Cyclic AMP and cyclic GMP content and binding in malignancy. Biochem Biophys Res Commun 62:320–327

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, Dietz SB, O’Toole AG (1969) Cyclic guanosine 3′,5′-monophosphate in mammalian tissues and urine. J Biol Chem 244:4458–4466

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Haddox MK (1977) Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem 46:823–896

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, Haddox MK, Nicol SE, Glass DB, Sanford CH, Kuehl FA Jr, Estensen R (1975) Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: The yin yang hypothesis. Adv Cyclic Nucleotide Res 5:307–330

    PubMed  CAS  Google Scholar 

  • Goldberg ND, O’Dea RF, Haddox MK (1973) Cyclic GMP. Adv Cyclic Nucleotide Res 3:155–223

    PubMed  CAS  Google Scholar 

  • Gorenstein DG (1975) Dependence of 31P chemical shifts on oxygen-phosphorus-oxygen bond angles in phosphate esters. J Am Chem Soc 97:898–900

    Article  CAS  Google Scholar 

  • Greengard P (1971) On the reactivity and mechanism of action of cyclic nucleotides. Ann NY Acad Sci 185:18–26

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Paoletti R, Robison GA (1972) Adv Cyclic Nucleotide Res 1,2

    Google Scholar 

  • Greengard P, Rudolph SA, Sturtevant JM (1969) Enthalpy of hydrolysis of the 3′ bond of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate. J Biol Chem 244:4798–4800

    PubMed  CAS  Google Scholar 

  • Gresser I (1977) On the varied biologic effect of interferon. Cell Immunol 34:406–415

    Article  PubMed  CAS  Google Scholar 

  • Gresser I, DeMaeyer-Guignard J, Tovey MG, DeMaeyer E (1979) Electrophoretically pure mouse interferon exerts multiple biologic effects. Proc Natl Acad Sci USA 76:5308–5312

    Article  PubMed  CAS  Google Scholar 

  • Grollman EF, Lee G, Ramos S, Lazo PS, Kaback HR, Friedman RM, Kohn LD (1978) Relationships of the structure and function of the interferon receptor to hormone receptors and establishment of the antiviral state. Cancer Res 38:4172–4185

    PubMed  CAS  Google Scholar 

  • Guilford H, Larsson P-O, Mosbach K (1972) On adenine nucleotides for affinity chromatography. Chimica Scripta 2:165–170

    CAS  Google Scholar 

  • Gulyaev NN, Baranova LA, Severin ES (1976) Adenosine-3′,5′-cyclosulfate for selective regulation of the level of adenosine-3′,5′-cyclophosphate in cell. U.S.S.R. Patent 502,887. Chem Abstr 84:136012x

    Google Scholar 

  • Gulyaev NN, Tunitskaya VL, Nesterova MV, Mazurova LA, Murtuzaev IM, Severin ES (1977) Interaction of 8-substituted derivatives and adenosine-3′,5′-cyclophosphate es ters with protein kinase from pig brain. Biokhimiya (Moscow) 42:2071–2078

    CAS  Google Scholar 

  • Haake PC, Westheimer FH (1961) Hydrolysis and exchange in esters of phosphoric acid. J Am Chem Soc 83:1102–1113

    Article  CAS  Google Scholar 

  • Haga K, Kainosho M, Yoshikawa M (1971) Studies of phosphorylation. V. The synthesis of inosine-5′-thiophosphates. Bull Chem Soc (Japan) 44:460–463

    Article  CAS  Google Scholar 

  • Hall DA, Barnes LD, Dousa TP (1977) Cyclic AMP in action of antidiuretic hormone: effects of exogenous cyclic AMP and its new analogue. Am J Physiol 232F:368–376

    Google Scholar 

  • Halprin KM (1976) Cyclic nucleotides and epidermal cell proliferation. J Invest Dermatol 66:339–343

    Article  PubMed  CAS  Google Scholar 

  • Hampton A, Brox LW, Bayer M (1969) Analogs of inosine 5′-phosphate with phosphorus-nitrogen and phosphorus-sulfur bonds. Binding and kinetic studies with inosine 5′-phosphate dehydrogenase. Biochemistry 8:2303–2311

    Article  PubMed  CAS  Google Scholar 

  • Hanze AR (1967) Deazapurine riboside cyclic 3′,5′-phosphates and process therefor. US Patent 3,300,479

    Google Scholar 

  • Hanze AR (1968) Nucleic Acids. V. Nucleotide derivatives of tubercidin (7-deazaadenosine). Biochemistry 7:932–939

    Article  PubMed  CAS  Google Scholar 

  • Haque M, Caughlan CN, Moats WL (1970) The crystal and molecular structure of propane-1,3-diol cyclic phosphate (C3H7PO4). J Org Chem 35:1446–1448

    Article  Google Scholar 

  • Hardman JG, Davis JW, Sutherland EW (1966) Measurement of guanosine 3′,5′-mono-phosphate and other cyclic nucleotides. J Biol Chem 241:4812–4815

    PubMed  CAS  Google Scholar 

  • Hardman JG, Davis JW, Sutherland EW (1969) Effects of some hormonal and other factors on the excretion of guanosine 3′,5′-monophosphate and adenosine 3′,5′-monophos-phate in rat urine. J Biol Chem 244:6354–6362

    PubMed  CAS  Google Scholar 

  • Hardman JG, Robison GA, Sutherland EW (1971) Cyclic nucleotides. Annu Rev Physiol 33:311–336

    Article  PubMed  CAS  Google Scholar 

  • Hardman JG, Sutherland EW (1965) A cyclic 3′,5′-nucleotide phosphodiesterase from heart with specificity for uridine 3′,5′-phosphate. J Biol Chem 240:3704–3705

    PubMed  CAS  Google Scholar 

  • Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphate. J Biol Chem 244:6363–6370

    PubMed  CAS  Google Scholar 

  • Hashimoto J, Uchida T, Egami F (1970) Action of ribonucleases T1 T2, and U2 on dinucleoside monophosphates containing 7-deazapurine base. Biochim Biophys Acta 199:535–536

    PubMed  CAS  Google Scholar 

  • Hayaishi O, Greengard P, Colowick SP (1971) On the equilibrium of the adenylate cyclase reaction. J Biol Chem 246:5840–5843

    PubMed  CAS  Google Scholar 

  • Hemmes P, Oppenheimer L, Jordan F (1976) Ultrasonic relaxation evidence for a two-state glycosyl conformational equilibrium in aqueous solution of adenosine 3′,5′-cyclic monophosphate. J Chem Soc Chem Commun 929–930

    Google Scholar 

  • Hevesi L, Davidson EW, Nagy JB, Nagy OB, Bruglants A (1972) Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides. J Am Chem Soc 94:4715–4720

    Article  PubMed  CAS  Google Scholar 

  • Hirata M, Hayaishi O (1966) Enzymatic formation of deoxyadenosine 3′,5′-phosphate. Bio-chem Biophys Res Commun 24:360–364

    Article  CAS  Google Scholar 

  • Hoffman DJ, Whistler RL (1968) Diabetogenic action of 5-thio-D-glucopyranose in rats. Biochemistry 7:4479–4482

    Article  PubMed  CAS  Google Scholar 

  • Hoffman DJ, Whistler RL (1970) Synthesis and properties of nucleotides containing 4-thio-D-ribofuranose. Biochemistry 9:2367–2372

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Flockerzi V, Schwechheimer K, Speichermann N (1979) Krause EG, Pinna L, Wollenberger A (eds) In: Studies on the activation mechanism of cyclic nucleotide-de-pendent protein kinases. FEBS 12 th Meeting, Dresden, 1978, vol 54, Symposium 7: Cyclic Nucleotides and Protein Phosphorylation in Cell Regulation. Pergamon Press, London, New York, p 115

    Google Scholar 

  • Höfle G, Steglich W (1972) 4-Dialkylaminopyridines as acylation catalysts; III. Acylation of sterically hindered alcohols. Synthesis 619–621

    Google Scholar 

  • Holmes RE, Robins RK (1964) Purine nucleosides. VII. Direct bromination of adenosine, deoxyadenosine, guanosine, and related purine nucleosides. J Am Chem Soc 86:1242–1245

    Article  CAS  Google Scholar 

  • Holý A (1969a) Oligonucleotidic compounds. XXX. Synthesis of some 5′-O-substituted derivatives of guanosine 2′,3′-cyclic phosphate and guanylyl-(3′,→5′)-uridine. Coll Czech Chem Commun 34:1261–1277

    Google Scholar 

  • Holý A (1969b) Nucleic acid components and their analogues. CXXVIII. Phosphorylation of some thymine 1-pentopyranosyl and 1-hexopyranosyl derivatives by the reaction with triethyl phosphite and hexachloroacetone. Coll Czech Chem Commun 34:3510–3522

    Google Scholar 

  • Holý A (1970a) Oligonucleotidic compounds. XXXVIII. Synthesis of diribonucleoside phosphates and triribonucleoside diphosphates derived from adenosine 3′-phosphate and guanosine 3′-phosphate: A general approach to the synthesis of oligonucleotides. Coll Czech Chem Commun 35:3686–3711

    Google Scholar 

  • Holý A (1970b) Nucleic acid components and their analogues. CXXX. Preparation of nu-cleotide derivatives of 1′-homouridine and their behaviour towards some nucleolytic enzymes. Coll Czech Chem Commun 35:81–88

    Google Scholar 

  • Holý A, Bald RW (1971) Nucleic acid components and their analogues. CXXXVIII. Synthesis of 2′,3′-cyclic phosphates derived from some pyrimidine ribonucleosides and their behaviour towards pancreatic ribonuclease and ribonuclease T2. Coll Czech Chem Commun 36:2809–2823

    Google Scholar 

  • Holý A, Bald RW, Hong NgD (1971) Nucleic acid components and their analogues. CXXXVII. Preparation and properties of some N-(2-hydroxyethyl) derivatives of ribonucleosides and nucleotides. Coli Czech Chem Commun 36:2658–2676

    Google Scholar 

  • Holý A, Chlädek S, Zemlicka J (1969) Oligonucleotidic compounds. XXIX. Reactions of ribonucleoside 2′(3′)-phosphates with dimethylformamide acetals. Coll Czech Chem Commun 34:253–271

    Google Scholar 

  • Holý A, Smrt J (1966) Oligonucleotide compounds. XL Synthesis of ribonucleoside-2′,3′ cyclophosphates from nucleosides via nucleoside 2′,3′-phosphites. Coll Czech Chem Commun 31:1528–1534

    Google Scholar 

  • Holý A, Smrt J, Šorm F (1965) Nucleic acids components and their analogues. LXXI. Oxidation of nucleoside 5′-phosphates on treatment with halo acid derivatives and hexachloroacetone. Coll Czech Chem Commun 30:3309–3319

    Google Scholar 

  • Holy A, ′orm F (1966) Nucleic acids components and their analogues. LXXXI. A selective synthesis of ribonucleoside-2′(3′) phosphites. Coll Czech Chem Commun 31:1562–1568

    CAS  Google Scholar 

  • Holy A, Sorm F (1969) Oligonucleotidic compounds. XXXII. Phosphorylation of 1-lyxo-furanosyl, 1-xylofuranosyl and 1-arabinofuranosyl derivatives of uracil and thymine with triethyl phosphite and hexachloroacetone. Coll Czech Chem Commun 34:1929–1953

    CAS  Google Scholar 

  • Holy H, Ivanova GS (1974) Aliphatic analogues of nucleotides: synthesis and affinity towards nucleases. Nucleic Acids Res 1:19–34

    Article  PubMed  CAS  Google Scholar 

  • Hong CI, Tritsch GL, Mittelman A, Hebborn P, Chheda GP (1975) Synthesis and antitumor activity of 5′-phosphates and cyclic 3′,5′-phosphates derived from biologically active nucleosides. J Med Chem 18:465–473

    Article  PubMed  CAS  Google Scholar 

  • Honjo M, Furukawa Y, Yoshioka Y, Imada A, Fujii S, Ootsu K, Kimura T, Komeda T, Matsumoto T (1968) Synthesis of 6-mercaptopurine 2′-deoxyribonucleoside and its related compounds and their biological activities. Ann Rep Takeda Res Lab 27:1–19

    CAS  Google Scholar 

  • Honjo M, Marumoto R, Yoshioka Y, Takatsuki S (1973) 2-Substituted adenosine 3′,5′-cyclomonophosphates. Ger Offen 2,324,130

    Google Scholar 

  • Hoppe J, Wagner KG (1974) Synthesis and properties of N6,C-8 and C-2 spin-labelled derivatives of adenosine cyclic 3′,5′-monophosphate. Eur J Biochem 48:519–525

    Article  PubMed  CAS  Google Scholar 

  • Hsie AW, Puck TT (1971a) Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3′,5′-monophosphate and testosterone. Proc Natl Acad Sci USA 68:358–361

    Article  PubMed  CAS  Google Scholar 

  • Hsie AW, Janes C, Puck TT (1971 b) Further changes in differentiation state accompanying the conversion of Chinese hamster cells to fibroblastic form by dibutyryl adenosine cyclic 3′:5′-monophosphate and hormones. Proc Natl Acad Sci USA 68:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Hubert-Habart M, Goodman L (1969) The direct formation of a 3′,5′-cyclic mononu-cleotide from an adenine nucleoside. J Chem Soc Chem Commun 740–741

    Google Scholar 

  • Hutchinson DW (1971) Phosphates and phosphonates of biochemical interest. In: Trippett (ed) Organophosphorus chemistry, vol 2. John Wright and Sons Ltd, Bristol, pp 119–155

    Chapter  Google Scholar 

  • Hwang TC, Clark VL, Bernlohr RW (1974) Guanosine 3′,5′-cyclic monophosphate phosphodiesterase activity of Bacillus Licheniformis. Biochem Biophys Res Commun 58:707–713

    Article  PubMed  CAS  Google Scholar 

  • Ikehara M, Harada F, Ohtsuka E (1966) Polynucleotides. III. Synthesis of four trinucleoside diphosphates containing tubercidin (7-deazaadenosine) and N6-dimethyl-adenosine. Chem Pharm Bull (Tokyo) 14:1338–1346

    CAS  Google Scholar 

  • Ikehara M, Muneyama K (1967) Studies of nucleosides and nucleotides. XXXIV. Purine cyclonucleosides. 4. Synthesis of a cyclonucleoside having an O cyclo linhage derived from guanosine. J Org Chem 32:3039–3042

    Article  PubMed  CAS  Google Scholar 

  • Ikehara M, Ohtsuka E (1963 a) Studies on coenzyme analogs. XVI. Synthesis of 9-D-erythrityladenine and its phosphates. Chem Pharm Bull (Tokyo) 11:1095–1101

    CAS  Google Scholar 

  • Ikehara M, Ohtsuka E (1963 b) Studies on coenzyme analogs. XIX. Further investigations of phosphorylation using morpholinophosphorodicholoridate and P1-diphenyl P2-morpholino pyrophosphorochloridate. Chem Pharm Bull (Tokyo) 11:1353–1358

    CAS  Google Scholar 

  • Ikehara M, Ohtsuka E (1963 c) Studies of nucleosides and nucleotides. XXI. A new synthesis of thymidine 5′-triphosphate and the use of P1,P2-di-(2-cyanoethyl)-pyrophosphate in the nucleoside triphosphate synthesis. Chem Pharm Bull (Tokyo) 11:1358–1363

    CAS  Google Scholar 

  • Ikehara M, Tazawa I (1966) Studies of nucleosides and nucleotides. XXIX. Direct synthesis of nucleoside-2′,3′-cyclic phosphates. J Org Chem 31:819–821

    Article  PubMed  CAS  Google Scholar 

  • Ikehara M, Uesugi S (1969) Studies of nucleosides and nucleotides. XXXVIII. Synthesis of 8-bromoadenosine nucleotides. Chem Pharm Bull (Tokyo) 17:348–354

    CAS  Google Scholar 

  • Ikehara M, Uesugi S (1972) Studies of nucleosides and nucleotides. LIII. Purine cyclonucleosides-18. Selective tosylation of adenine nucleotides. Synthesis of 8,2′-anhydro-8-mercapto-9-β-D-arabinofuranosyladenine 5′-and 3′,5′-cyclic phosphate. Tetrahedron 28:3687–3694

    Article  CAS  Google Scholar 

  • Ikehara M, Uesugi S, Kaneko M (1967) Bromination of adenine nucleoside and nucleotide. J Chem Soc Chem Commun 17–18

    Google Scholar 

  • Ikehara M, Uesugi S, Kaneko M (1978) 8-Bromoadenosine and its 5′-phosphate. Nucleic acid chem., improved and new synthetic procedures, methods, and techniques. Townsend, Tipson (eds) John Wiley and Sons, New York, pt 2 p 837–841

    Google Scholar 

  • Imai K, Fujii S, Takanohashi K, Furukawa Y, Masuda T, Honjo M (1969) Studies on phosphorylation. IV. Selective phosphorylation of the primary hydroxyl group in nucleosides. J Org Chem 34:1547–1550

    Article  CAS  Google Scholar 

  • Imai K, Marumoto R, Kobayashi K, Yoshioka Y, Toda J, Honjo M (1971) Synthesis of compounds related to inosine 5′-phosphate and their flavor enhancing activity. IV. 2-Substituted inosine 5′-phosphates. Chem Pharm Bull (Tokyo) 19:576–586

    CAS  Google Scholar 

  • Imai S, Otorii T, Takeda K, Katano Y, Horii D (1974) Effects of cyclic AMP and dibutyryl cyclic AMP on the heart and coronary circulation. Jpn J Pharmacol 24:499–510

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Takahashi S, Tasumi M, Miyazawa T (1976) Conformation of thymidine 3′,5′-cyclic phosphate in aqueous solution. Compatibility of the information from the lan-thanide-ion probe and the spin-coupling constants. Bull Chem Soc (Jpn) 49:611–616

    Article  CAS  Google Scholar 

  • Ingemarsson S, Cantell K, Strander H (1979) J Infect Dis 140:560

    Article  Google Scholar 

  • Ishikawa E, Ishikawa S, Davis JW, Sutherland EW (1969) Determination of guanosine 3′,5′-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem 244:6371–6376

    PubMed  CAS  Google Scholar 

  • Ishiyama J (1975) Isolation of cyclic 3′,5′-pyrimidine mononucleotides from bacterial culture fluids. Biochem Biophys Res Commun 65:286–292

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama J (1976) Isolation of cyclic deoxyadenosine 3′,5′-monophosphate from the culture fluid of Corynebacterium murisepticum No 7. J Biol Chem 251:438–440

    PubMed  CAS  Google Scholar 

  • Ishiyama J, Yokotsuka T, Saito N (1974) Cyclic-AMP production by Corynebacterium murisepticum No 7 (ATCC 21374) and Microbacterium sp. No 205 (ATCC 21376). Agr Biol Chem 38:507–514

    Article  CAS  Google Scholar 

  • Jardetzky CD (1962) Proton magnetic resonance of nucleotides. IV. Ribose conformation. J Am Chem Soc 84:62–66

    Article  CAS  Google Scholar 

  • Jastorff B, Bär H-P (1973) Effects of 5′-amido analogues of adenosine 3′,5′-monophosphate and adenosine 3′,5′-monophosphothioate on protein kinase, binding protein and phosphodiesterases. Eur J Biochem 37:497–504

    Article  PubMed  CAS  Google Scholar 

  • Jastorff B, Freist W (1972) New analogs of adenosine-3′,5′-cyclophosphate. Angew Chem (Engl) 11:713

    Article  CAS  Google Scholar 

  • Jastorff B, Freist W (1974) Synthesis and biological activities of cyclic AMP analogs modified in the 1,2 and 2′-positions. Bioorg Chem 3:103–113

    Article  CAS  Google Scholar 

  • Jastorff B, Hoppe J, Morr M (1979) A model for the chemical interactions of adenosine 3′,5′-monophosphate with the R subunit of protein kinase type I. Refinement of the cyclic phosphate binding moiety of protein kinase type I. Eur J Biochem 101:555–561

    Article  PubMed  CAS  Google Scholar 

  • Jastorff B, Krebs T (1972) Analoge des Adenosin-(3′.5′)-cyclophosphats mit Stickstoff und Schwefelatomen im Phosphatring. Chem Ber 105:3192–3202

    Article  PubMed  CAS  Google Scholar 

  • Jastorff B, Krebs T (1974) Amidocyclothiophosphates. Ger Offen 2,247,782

    Google Scholar 

  • Jergil B, Guilford H, Mosbach K (1974) Biospecific affinity chromatography of an adenosine 3′,5′-cyclic monophosphate-stimulated protein kinase (Protamine kinase from trout testis) by using immobilized adenine nucleotides. Biochem J 139:441–448

    PubMed  CAS  Google Scholar 

  • Jergil B, Mosbach K (1974) Cyclic AMP: Purification of protamine kinase. Methods Enzymol 34:261–264

    Article  PubMed  CAS  Google Scholar 

  • Johnson GS, Friedman RM, Pastan I (1971) Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3′,5′-cyclic monophosphate and its derivatives. Proc Natl Acad Sci USA 68:425–429

    Article  PubMed  CAS  Google Scholar 

  • Johnson LD, Hadden JW (1977) Modification of human DNA-dependent RNA polymerase activity by cyclic GMP. Nucleic Acids Res 4:4007–4014

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Walseth TF (1979) The enzymatic preparation of [α-32P]ATP, [α-32P]GTP, [32P]cAMP, and [32P]cGMP, and their use in the assay of adenylate and guanylate cyclases and cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res 10:135–167

    PubMed  CAS  Google Scholar 

  • Jones GH, Albrecht HP, Damodaran NP, Moffatt JG (1970) Synthesis of isosteric phosphonate analogs of some biologically important phosphodiesterases. J Am Chem Soc 92:5510–5511

    Article  PubMed  CAS  Google Scholar 

  • Jones GH, Moffatt JG (1968) The synthesis of 6′-deoxy-homonucleoside-6′-phosphonic acids. J Am Chem 90:5337–5338

    Article  CAS  Google Scholar 

  • Jones GH, Moffatt JG (1969) 3′-Cyclic esters of 5′-deoxy-5′dihydroxyphosphinylmethyl)-nucleosides. US Patent 3,446,793

    Google Scholar 

  • Jones GH, Moffatt JG (1974) Cyclic phosphoric acid ester of 1,N6-ethenoadenosines. Ger Offen 2,350,608

    Google Scholar 

  • Jones GH, Moffatt JG (1975) 1,N6-Ethenoadenosine cyclophosphate compounds. US Patent 3,872,098

    Google Scholar 

  • Jones GH, Murthy DVK, Tegg D, Golling R, Moffatt JG (1973) Analogs of adenosine 3′,5′-cyclic phosphate. IL Synthesis and enzymatic activity of derivatives of 1,N6-ethenoadenosine 3′,5′-cyclic phosphate. Biochem Biophys Res Commun 53:1338–1343

    Article  PubMed  CAS  Google Scholar 

  • Jones GH, Ranganathan RS, Moffatt JG (1975) Purine nucleoside 3′,5′-cyclic phosphates. US Patent 3,872,084

    Google Scholar 

  • Jordan F (1973) The electronic structure of and conformational energy barrier to rotation around the C-N glycosidic linkage in adenosine-3′,5′-cyclicmonophosphate (cyclic AMP) and its phosphonate analog. J Theor Biol 41:23–40

    Article  PubMed  CAS  Google Scholar 

  • Jurovcik M, Holý A, Šorm F (1971) The utilization of l-adenosine by mammalian tissues. FEBS Lett 18:274–276

    Article  PubMed  CAS  Google Scholar 

  • Kainosho M, Ajisaka K (1975) Conformational study of cyclic nucleotides. Lanthanide ion assisted analysis of the hydrogen-1 nuclear magnetic resonance spectra. J Am Chem Soc 97:6839–6843

    Article  PubMed  CAS  Google Scholar 

  • Kaiser ET, Lee TWS, Boer FP (1971) Structure and enzymatic reactivity of an aromatic five-membered cyclic phosphate diester. Biological implications. J Am Chem Soc 93:2351–2353

    Article  PubMed  CAS  Google Scholar 

  • Kanai T, Ichino M, Hoshi A, Kuretani K (1971) Some phosphate esters of cyclocytidine and aracytidine. Tetrahedron Lett 1965–1968

    Google Scholar 

  • Karpeiskii MYa, Yakovleve GI (1975) Nuclear Overhauser effect study on base and sugar relative arrangement in aqueous solutions of cytidine nucleotides. Bioorg Khim 1:749–757

    CAS  Google Scholar 

  • Kavunenko AP, Holý A (1978) Acceptor activity of uracil nucleosides in the dinucleoside monophosphate synthesis catalyzed by pancreatic ribonuclease. Nucleic Acids Res Spe Publ 4:sl43–146

    Google Scholar 

  • Kawana M, Ivanovics GA, Rousseau RJ, Robins RK (1972) Azapurine nucleosides. 3. Synthesis of 7-(β-D-ribofuranosyl)imidazo[4,5-d]-v-triazin-4-one (2-azainosine) and related derivatives. J Med Chem 15:841–843

    Article  PubMed  CAS  Google Scholar 

  • Kawanabe T, Machida M (1976) Cyclic phosphoric acid esters of 1,N6-ethenoadenosines. Ger Offen 2,365,720

    Google Scholar 

  • Kazimierczuk Z, Shugar D (1973) Preparative photochemical synthesis of isoguanosine ribo-and deoxyribonucleosides and nucleotides, and isoguanosine-3′,5′-cyclic phosphate, a new cAMP analogue. Acta Biochim Pol 20:395–402

    PubMed  CAS  Google Scholar 

  • Khorana HG (1961 a) Cyclic phosphate formation and its role in the chemistry of phosphate esters of biological interest. In: Some recent developments in the chemistry of phosphate esters of biological interest. John Wiley and Sons, Inc. New York, pp 44–68

    Google Scholar 

  • Khorana HG (1961 b) Phosphodiesterases. In: Boyer PD, Lardy H, Myrbäck K (eds) Enzymes. Academic Press, New York, pp 79–94

    Google Scholar 

  • Khorana HG, Vizsolyi JP (1961) Studies on polynucleotides. VIII. Experiments on the polymerization of mononucleotides. Improved preparation and separation of linear thymidine polynucleotides. Synthesis of corresponding members terminated in deoxycytidine residues. J Am Chem Soc 83:675–685

    Article  CAS  Google Scholar 

  • Khorana HG, Turner AF, Vizsolyi JP (1961) Studies on polynucleotides. IX. Experiments on the polymerization of mononucleotides. Certain protected derivatives of deoxy-cytidine-5′ phosphates and the synthesis of deoxycytidine polynucleotides. J Am Chem Soc 83:686–698

    Article  CAS  Google Scholar 

  • Khorana HG, Tener GM, Wright RS, Moffatt JG (1957) Cyclic phosphates. III. Some general observations on the formation and properties of five-, six-and seven-membered cyclic phosphate esters. J Am Chem Soc 79:430–436

    Article  CAS  Google Scholar 

  • Khwaja TA, Boswell KH, Robins RK, Miller JP (1975) 8-Substituted derivatives of adenosine 3′,5′-cyclic phosphate require an unsubstituted 2′-hydroxyl group in the ribo configuration for biological activity. Biochemistry 14:4238–4244

    Article  PubMed  CAS  Google Scholar 

  • Khwaja TA, Harris R, Robins RK (1972) Synthesis of 9-β-D-arabinofuranosyladenine-3′,5′-cyclic phosphate from adenosine-3′,5′-cyclic phosphate. Tetrahedron Lett 4681–4684

    Google Scholar 

  • Khwaja TA, Kigwana L, Robins RK (1974) Nucleoside 3′,5′-cyclic phosphates as antitumor agents. Proc Am Assoc Cancer Res 15:94. Abstr 373

    Google Scholar 

  • Khwaja TA, Robins RK (1979) Personal communication

    Google Scholar 

  • Kikkoman Shoyu Company (1971a) 3′,5′-Cyclic adenylic acid production. US Patent 3,630,842

    Google Scholar 

  • Kikkoman Shoyu Company (1971b) 3′,5′-Cyclic deoxyadenylic acid. Japanese Patent 71 42,958

    Google Scholar 

  • Kimura H, Murad F (1974) Nonenzymatic formation of guanosine 3′,5′-monophosphate from guanosine triphosphate. J Biol Chem 249:329–331

    PubMed  CAS  Google Scholar 

  • Kishi T, Muroi M, Kusaka T, Nishikawa M, Kamiya K, Mizuno K (1967) The structure of aristeromycin. J Chem Soc Chem Commun 852–853

    Google Scholar 

  • Klee WA, Mudd SH (1967) The conformation of ribonucleosides in solution. The effect of structure on the orientation of the base. Biochemistry 6:988–998

    Article  PubMed  CAS  Google Scholar 

  • Klein RS, Wempen I, Watanabe KA, Fox JJ (1970) Nucleosides. LXVII. The chemistry of 4-methyl-2-pyrimidinone ribonucleosides. J Org Chem 35:2330–2334

    Article  PubMed  CAS  Google Scholar 

  • Kneer NM, Bosch AL, Clark MG, Lardy HA (1974) Glucose inhibition of epinephrine stimulation of hepatic gluconeogenesis by blockade of the α-receptor function. Proc Natl Acad Sci USA 71:4523–4527

    Article  PubMed  CAS  Google Scholar 

  • Kobata A, Kida M, Ziro S (1961) Occurrence of 3′,5′-cyclic AMP in milk. J Biochem 50:275–276

    PubMed  CAS  Google Scholar 

  • Koblet H, Wyler R, Kohler U (1978) Kinetics of interferon action. Experientia 34:1164–1165

    Article  PubMed  CAS  Google Scholar 

  • Koblet H, Wyler R, Kohler U (1979) Increase of interferon antiviral activity by exogenous cyclic adenosine3′,5′-monophosphate (cAMP). Experientia 35:575–576

    Article  PubMed  CAS  Google Scholar 

  • Kochetkov NK, Budovskii EI, Sverdlov ED, Simukova NA, Turchinskii MF, Shibaev VN (1972) Cleavage of phosphoester bonds and some other reactions of phosphate groups of nucleic acids and their components. In: Kochetkov, Budovskii (eds) Organic chemistry of nucleic acids, Part B, Plenum Press, London

    Google Scholar 

  • Koontz JW, Wicks WD (1977) Inhibition of human granulocyte function by methotrexate. Cancer Res 37:651–655

    PubMed  CAS  Google Scholar 

  • Kreis W, Wechter WJ (1972) Studies on drug resistance. IV. Synthesis and biological activities of 1-β-D-arabinofuranosylcytosine 3′,5′-cyclic monophosphate and a derivative. Res Commun Chem Pathol Pharmacol 4:631–640

    PubMed  CAS  Google Scholar 

  • Kreis W, Wechter WJ (1972) Biological activity of 3′,5′-cyclic phosphates of 1-β-D-arabino-furanosylcytosine (arc-C). Proc Am Assoc Cancer Res 13:62

    Google Scholar 

  • Kukovetz WR, Poch G (1970) Cardiostimulatory effects of cyclic 3′,5′-adenosine monophosphate and its acylated derivatives. Naunyn-Schmiedebergs Arch Pharmakol 266:236–254

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto J, Cox JR Jr, Westheimer FH (1956) Barium ethylene phosphate. J Am Chem Soc 78:4858–4860

    Article  CAS  Google Scholar 

  • Kung W, Marsh RE, Kainosho M (1977) Crystal and solution structure of 2′,5′-arabinosyl-cytidine monophosphate. Influence of POC bond angles on the protonphosphorus vicinal coupling constants in the P-O-C-H fragments. J Am Chem Soc 99:5471–5477

    Article  PubMed  CAS  Google Scholar 

  • Kuo JF, Brackett NL, Shoji M, Tse J (1978) Cytidine 3′:5′-monophosphate phosphodiesterase in mammalian tissues. J Biol Chem 253:2518–2521

    PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1969) Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′,5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci USA 64:1349–1355

    Article  PubMed  CAS  Google Scholar 

  • Kuo JF, Krueger BK, Sanes JR, Greengard P (1970) Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3′,5′-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta 212:79–91

    PubMed  CAS  Google Scholar 

  • Kura G, Ohashi S (1971) Chromatographic separation of cyclic phosphates by means of an anion-exchange dextran gel. J Chromatogr 56:111–120

    Article  CAS  Google Scholar 

  • Lapinet E, Cehovic G, Posternak T (1971) New cosmetic compositions intended for the physiological care of human skin, hair and nails. French Patent 7,004,557

    Google Scholar 

  • Lapper RD, Mantsch HH, Smith ICP (1972) A carbon-13 and hydrogen-1 nuclear magnetic resonance study of the conformations of 3′,5′-and 2′,3′-cyclic nucleotides. A demonstration of the angular dependence of three-bond spin-spin couplings between carbon and phosphorus. J Am Chem Soc 94:6243–6244

    Article  PubMed  CAS  Google Scholar 

  • Lapper RD, Mantsch HH, Smith ICP (1973) A carbon-13 nuclear magnetic resonance study of the conformations of 3′,5′-cyclic nucleotides. J Am Chem Soc 95:2878–2880

    Article  PubMed  CAS  Google Scholar 

  • Lapper RD, Smith ICP (1973) A 13C and 1H nuclear magnetic resonance study of the conformations of 2′,3′-cyclic nucleotides. J Am Chem Soc 95:2880–2884

    Article  CAS  Google Scholar 

  • Lavallee DK, Coulter CL (1973) Structural chemistry of cyclic nucleotides. III. Proton magnetic resonance studies of β-pyrimidine nucleotides. J Am Chem Soc 95:576–581

    Article  PubMed  CAS  Google Scholar 

  • Lavallee DK, Myers RB (1978) Role of the pyrimidine base in ribonuclease A hydrolysis of RNA. Determination of the conformation of cyclic β-cytidine 2′,3#x2032;-phosphate and cyclic β-uridine 2′,3′-phosphate in solution. J Am Chem Soc 100:3907–3912

    Article  CAS  Google Scholar 

  • Lavallee DK, Zeltmann AH (1974) Conformation of cyclic β-adenosine 3′,5′-phosphate in solution using the lanthanide shift technique. J Am Chem Soc 96:5552–5556

    Article  PubMed  CAS  Google Scholar 

  • Lawson AM, Stillwell RN, Tacker MM, Tsuboyama K, McCloskey JA (1971) Mass spectrometry of nucleic acid components. Trimethylsilyl derivatives of nucleotides. J Am Chem Soc 93:1014–1023

    Article  PubMed  CAS  Google Scholar 

  • Lee WW, Fisher LV, Goodman L (1971) 9-(β-D-Arabinofuranosyl)adenine 3′,5′-cyclic phosphate. J Heterocycl Chem 8:179–180

    Article  CAS  Google Scholar 

  • Lee CC, Schrier WH, Nagyvary J (1979) The enzymatic hydrolysis of the phosphate ester bond in some thionucleotides. Biochim Biophys Acta 561:223–231

    PubMed  CAS  Google Scholar 

  • Lee C-H, Sarma RH (1976) Aqueous solution conformation of rigid nucleosides and nucleotides. J Am Chem Soc 98:3541–3548

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1975) Biochemistry. 2nd edn. Worth Publishers, New York, p 729

    Google Scholar 

  • Leonard NJ, Laursen RA (1965) Synthesis of 3-β-D-ribofuranosyladenine and (3-β-D-ribofuranosyladenine)-5′-phosphate. Biochemistry 4:354–365

    Article  CAS  Google Scholar 

  • Leonov D, Elad D (1974) Ultraviolet-and γ-ray-induced reactions of nucleic acid constituents. Reactions of purines with ethers and dioxolane. J Org Chem 39:1470–1473

    Article  CAS  Google Scholar 

  • LePage GA, Hersh EM (1972) Cyclic nucleotide analogs as carcinostatic agents. Biochem Biophys Res Commun 46:1918–1922

    Article  PubMed  CAS  Google Scholar 

  • Lespinasse JN, Vasilescu D (1974) Conformational analysis of a cyclic nucleotide: ′3′,5′-Adenosine monophosphate. A study based on the extended Hückel theory. Biopolymers 13:63–75

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TM, Flockhart DA, Corbin JD (1978) Studies on the structure and mechanism of activation of the guanosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 253:6002–6009

    PubMed  CAS  Google Scholar 

  • Lipkin D, Cook WH, Markham R (1959 a) Adenosine-3′:5′-phosphoric acid: A proof of structure. J Am Chem Soc 81:6198–6203

    Article  CAS  Google Scholar 

  • Lipkin D, Markham R, Cook WH (1959 b) The degradation of adenosine-5′-triphosphoric acid (ATP) by means of aqueous barium hydroxide. J Am Chem Soc 81:6075–6080

    Article  CAS  Google Scholar 

  • Lipkin D, Talbert PT (1955) The base-catalysed conversion of yeast ribonucleic acid to cyclic phosphate esters. Chem Industry (Lond) 143

    Google Scholar 

  • Lipkind GM (1976) Theoretical conformational analysis of cytidine 2′,3′-cyclophosphate. Mol Biol (Mosk) 10:490–493

    Google Scholar 

  • Litchfield GJ, Shaw G (1971) Purines, pyrimidines, and imidazoles. Part XXXV. Potentiometric and spectroscopic studies of some imidazoles related to intermediates in the biosynthesis de novo of purine nucleotides. J Chem Soc C:817–820

    Google Scholar 

  • Lo KW, Yip KF, Tsou KC (1975) Fluorometric assay of 2′,3′-cyclic adenosine monophosphate 3′-phosphohydrolase with 1,N6-etheno-2-aza-adenosine 2′,3′-monophosphate. J Neurochem 25:181–183

    Article  PubMed  CAS  Google Scholar 

  • Lohrmann R, Khorana HG (1964) Studies on polynucleotides. XXXIV. The specific synthesis of C3′-C5′-linked ribooligonucleotides. New protected derivatives of ribonucleo-sides and ribonucleoside 3′-phosphates. Further synthesis of diribonucleoside phosphates. J Am Chem Soc 86:4188–4194

    Article  CAS  Google Scholar 

  • Lomax NR, Narayanan VL (1979) Chemical structures of interest to the Division of Cancer Treatment. National Cancer Institute, Drug Synthesis and Chemistry Branch, January, p4

    Google Scholar 

  • Long RA, Robins RK (1978) 5-Bromouridine 3′,5′-cyclic monophosphate. Nucleic Acid Chemistry, Improved and New Synthetic Procedures, Methods and Techniques. Townsend, Tipson (eds) pt 2, John Wiley and Sons, New York, pp 817–819

    Google Scholar 

  • Long RA, Szekeres GL, Khwaja TA, Sidwell RW, Simon LN, Robins RK (1972) Synthesis and antitumor and antiviral activities of 1-β-D-arabinofuranosylpyrimidine 3′,5′-cyclic phosphates. J Med Chem 15:1215–1218

    Article  PubMed  CAS  Google Scholar 

  • MacCoss M, Ezra FS, Robins MJ, Danyluk SS (1977) Conformational characteristics of rigid cyclic nucleotides. 2. The solution conformation of β-nucleoside 3′,5′-cyclic monophosphates and the role of the 2′-hydroxyl group. J Am Chem Soc 99:7495–7502

    Article  PubMed  CAS  Google Scholar 

  • MacCoss M, Ezra FS, Robins MJ, Danyluk SS (1978) Proton magnetic resonance studies of 9-(β-D-xylofuranosyl)adenine 3′,5′-cyclic monophosphate and 9-(β-D-arabino-furanosyl)adenine 2′,5′-cyclic monophosphate. Carbohydr Res 62:203–212

    Article  CAS  Google Scholar 

  • Maguire MH, Caredes FP, Gough GR (1974) Effects of the 3′,5′-cyclic phosphates of 2-methylthioadenosine, 2-chloroadenosine and adenosine on platelet aggregation. Experientia 30:922–924

    Article  PubMed  CAS  Google Scholar 

  • Makabe O, Miyadera A, Kinoshita M, Umezawa S (1978) Cyclic phosphates of formycin. J Antibiot 31:456–467

    PubMed  CAS  Google Scholar 

  • Markham R (1957) The preparation and assay of cyclic nucleotides. Methods Enzymol 3:805–810

    Article  Google Scholar 

  • Markham R, Smith JD (1951) Structure of ribonucleic acid. Nature 168:406–408

    Article  PubMed  CAS  Google Scholar 

  • Markham R, Smith JD (1952) The structure of ribonucleic acids. 1. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem J 52:552–557

    PubMed  CAS  Google Scholar 

  • Marsh FJ, Weiner P, Douglas JE, Kollman PA, Kenyon GL, Gerlt JA (1980) Theoretical calculations on the geometric destabilization of 3′,5′-and 2′,3′-cyclic nucleotides. J Am Chem Soc 102:1660–1665

    Article  CAS  Google Scholar 

  • Marumoto R, Honjo M (1975) Aristeromycin-3′,6′-cyclic phosphoric acid. Japan Kokai 75 40,590

    Google Scholar 

  • Marumoto R, Nishimura T, Honjo M (1975) A new method for synthesis of nucleoside 3′,5′-cyclic phosphates. Cyclization of nucleoside 5′-trichloromethyl phosphonates. Chem Pharm Bull (Tokyo) 23:2295–2300

    CAS  Google Scholar 

  • Marumoto R, Yoshioka Y, Naka T, Shima S, Miyashita O, Maki Y, Suzuki T, Honjo M (1979) Synthesis and enzymatic activity of adenosine 3′,5′-cyclic phosphate analogs. Chem Pharm Bull (Tokyo) 27:990–1003

    CAS  Google Scholar 

  • Marx JL (1979) Interferon (II): Learning about how it works. Recent research is clarifying how interferon inhibits viral reproduction but its other actions are less well understood. Science 204:1293–1295

    Article  PubMed  CAS  Google Scholar 

  • Masson A, Levy B, Malrieu JP (1970) Formaldéhyde: calcul de l’énergic dans l’état fondamental par une méthode de perturbation. Theoret Chim Acta 18:193–207

    Article  CAS  Google Scholar 

  • Mato JM, Jastorff B, Morr M, Konijn TM (1978) A model for cyclic AMP-chemoreceptor interaction in Dictyostelium discoideum. Biochim Biophys Acta 544:309–314

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi MF, Friedman RM, Kohn LD (1977) An interferon-induced increase in cyclic AMP levels precedes the establishment of the antiviral state. Biochem Biophys Res Commun 79:239–246

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr (1979) Analogs of cyclic nucleotides. In: Wolff (ed) Burger’s medicinal chemistry, 4 th edn, part II, John Wiley and Sons Inc, New York, pp 1201–1224

    Google Scholar 

  • Meyer RB Jr, Miller JP (1974) Analogs of cyclic AMP and cyclic GMP: General methods of synthesis and the relationship of structure to enzymic activity. Life Sci 14:1019–1040

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr, Shuman DA (1975) 2-Substituted cyclic AMP derivatives. US Patent 3,917,583

    Google Scholar 

  • Meyer RB Jr, Shuman DA, Robins RK (1973 a) Synthesis of purine nucleoside 3′,5′-cyclic phosphoramidates. Tetrahedron Lett 269–272

    Google Scholar 

  • Meyer RB Jr, Shuman DA, Robins RK (1974 a) A new purine ring closure and the synthesis of 2-substituted derivatives of adenosine cyclic 3′,5′-phosphate. J Am Chem Soc 96:4962–4966

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr, Shuman DA, Robins RK (1974 b) Phosphoramidates of 3′,5′-cyclic purine nucleotides. US Patent 3,852,267

    Google Scholar 

  • Meyer RB Jr, Shuman DA, Robins RK, Bauer RJ, Dimmitt MK, Simon LN (1972) Synthesis and biological activity of several 6-substituted 9-β-D-Ribofuranosylpurine 3′,5′-cyclic phosphates. Biochemistry 11:2704–2709

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr, Shuman DA, Robins RK, Miller JP, Simon LN (1973 b) Synthesis and enzymic studies of 5-aminoimidazole and N1-and N6-substituted adenine ribonucleoside cyclic 3′,5′-phosphates prepared from adenosine cyclic 3′,5′-phosphate. J Med Chem 16:1319

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr, Stone TE, Heinzel FP (1978) Direct sulfhydrolysis of cyclic AMP: A one-step synthesis of the cyclic ribonucleotide of 6-mercaptopurine. J Heterocycl Chem 15:1511–1512

    Article  CAS  Google Scholar 

  • Meyer RB Jr, Stone TE, Ullman B (1979) 2′-O-Acyl-6-thioinosine cyclic 3′,5′-phosphates as prodrugs of thioinosinic acid. J Med Chem 22:811–815

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr, Uno H, Robins RK, Simon LN, Miller JP (1975 a) 2-Substituted derivatives of adenosine and inosine cyclic 3′,5′-phosphates. Synthesis, enzymic activity, and analysis of the structural requirements of the binding locale of the 2-substituent on bovine brain protein kinase. Biochemistry 14:3315–3321

    Article  PubMed  CAS  Google Scholar 

  • Meyer RB Jr, Uno H, Shuman DA, Robins RK, Simon LN, Miller JP (1975 b) The synthesis of 2,6-disubstituted-9-β-D-ribofuranosylpurine cyclic 3′,5′-phosphates and the selectivity of cAMP and cGMP-specific enzymes to substituents in these positions. J Cyclic Nucleotide Res 1:159–167

    CAS  Google Scholar 

  • Mian AM, Harris R, Sidwell RW, Robins RK, Khwaja TA (1974) Synthesis and biological activity of 9-β-D-arabinofuranosyladenine cyclic 3′,5′-phosphate and 9-β-D-arabino-furanosylguanine cyclic 3′,5′-phosphate. J Med Chem 17:259–263

    Article  PubMed  CAS  Google Scholar 

  • Mian AM, Long RA, Allen LB, Sidwell RW, Robins RK, Khwaja TA (1979) Synthesis and antitumor and antiviral activities of 1-β-D-arabinofuranosyl-2-amino-1,4(2H)imino-pyrimidine and its derivatives. J Med Chem 22:514–517

    Article  PubMed  CAS  Google Scholar 

  • Michal F, Maguire MH, Gough G (1969) 2-Methylthioadenosine-5′-phosphate: a specific inhibitor of platelet aggregation. Nature 222:1073–1074

    Article  PubMed  CAS  Google Scholar 

  • Michal G, Muehlegger K, Nelboeck M, Thiessen C, Weimann G (1974) Cyclophosphates. VI. Cyclophosphates as substrates and effectors of phosphodiesterase. Pharm Res Commun 6:203–252

    Article  CAS  Google Scholar 

  • Michelson AM (1958) Synthesis of nucleoside cyclic phosphates. Chem Ind 70–71

    Google Scholar 

  • Michelson AM (1959) Polynucleotides. Part II. Homopolymers of cytidylic and pseudouridylic acid, copolymers with repeating subunits, and the stepwise synthesis of polyribonucleotides. J Chem Soc 3655–3669

    Google Scholar 

  • Miller JP (1977) Cyclic nucleotide analogues. In: Cramer, Schultz (eds) Cyclic 3′,5′-nucleotides; mechanisms of action. John Wiley and Sons, New York, pp 77–105

    Google Scholar 

  • Miller JP, Beck AH, Simon LN, Meyer RB Jr (1975 a) Induction of hepatic tyrosine aminotransferase in vivo by derivatives of cyclic adenosine 3′,5′-monophosphate. J Biol Chem 250:426–431

    PubMed  CAS  Google Scholar 

  • Miller JP, Boswell KH, Meyer RB Jr, Christensen LF, Robins RK (1980 a) Synthesis and enzymatic and inotropic activity of some new 8-substituted and 6,8-disubstituted derivatives of adenosine cyclic 3′,5′-monophosphates. J Med Chem 23:242–251

    Article  PubMed  CAS  Google Scholar 

  • Miller JP, Boswell KH, Mian AM, Meyer RB Jr, Robins RK, Khwaja TA (1976) 2′-Derivatives of guanosine and inosine cyclic 3′,5′-phosphates. Synthesis, enzymic activity, and the effect of 8-substituents. Biochemistry 15:217–223

    Article  PubMed  CAS  Google Scholar 

  • Miller JP, Boswell KH, Muneyama K, Simon LN, Robins RK, Shuman DA (1973 a) Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3′,5′-cyclic phosphate, inosine 3′,5′-cyclic phosphate, and xanthosine 3′,5′-cyclic phosphate. Biochemistry 12:5310–5319

    Article  PubMed  CAS  Google Scholar 

  • Miller JP, Boswell KH, Muneyama K, Tolman RL, Scholten MB, Robins RK, Simon LN, Shuman DA (1973 b) Activity of tubercidin-, toyocamycin-, and sangivamycin-3′,5′-cyclic phosphates and related compounds with some enzymes of adenosine-3′,5′-cyclic phosphate metabolism. Biochem Biophys Res Commun 55:843–849

    Article  PubMed  CAS  Google Scholar 

  • Miller JP, Christensen LF, Andrea TA, Meyer RB Jr, Kitano S, Mizuno Y (1978) Interaction of “aza” and “deaza” analogs of adenosine cyclic 3′,5′-phosphate with some enzymes of adenosine cyclic 3′,5′-phosphate metabolism: Evidence that the lone pair electrons of N-3 are involved in the binding of adenosine cyclic 3′,5′-phosphate to type II adenosine cyclic 3′,5′-phosphate-dependent protein kinase. J Cyclic Nucleotide Res 4:133–144

    PubMed  CAS  Google Scholar 

  • Miller JP, Robins RK (1976) The chemical modification of cyclic AMP and cyclic GMP. Ann Rep Med Chem 11:291–300

    Article  CAS  Google Scholar 

  • Miller JP, Robins RK, Christensen LF, Boswell KH, Meyer RB Jr, submitted to J Cyclic Nucleotide Res

    Google Scholar 

  • Miller JP, Shuman DA, Scholten MB, Dimmitt MK, Stewart CM, Khwaja TA, Robins RK, Simon LN (1973 c) Synthesis and biological activity of some 2′-derivatives of adenosine 3′,5′-cyclic phosphate. Biochemistry 12:1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Miller JP, Yagura TS, Meyer RB Jr, Robins RK, Uno H (1980 b) Synthesis and enzymic studies of 2-substituted and 2-modified derivatives of 1,N6-ethenoadenosine cyclic 3′,5′-phosphate. J Carbohydr Nucleosides Nucleotides 7:167–184

    CAS  Google Scholar 

  • Miller Z, Lovelace E, Gallo M, Pastan I (1975 b) Cyclic guanosine monophosphate and cellular growth. Science 190:1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Mitsugi K, Komagata K, Takahashi M, Iizuka H, Katagiri H (1964) Bacterial synthesis of nucleotides. Part II. Distribution of nucleoside phosphotransferase in bacteria. Agr Biol Chem 28:586–600

    Article  CAS  Google Scholar 

  • Mizuno Y, Kitano S, Nomura A (1975) Nucleotides. III. Synthesis of deazaadenosine 3′,5′-cyclic phosphates and related nucleotides of biological interest. Chem Pharm Bull (Tokyo) 23:1664–1670

    CAS  Google Scholar 

  • Mizuno Y, Tazawa S, Kageura K (1968) Synthetic studies of potential antimetabolites. XII. Synthesis of 4-substituted 1-β-D-ribofuranosyl)-1H-imidazo[4,5-c]pyridines. Chem Pharm Bull (Tokyo) 16:2011–2017

    CAS  Google Scholar 

  • Moens W, Vokaer A, Kram R (1975) Cyclic AMP and cyclic GMP concentrations in serum-and density-restricted Fibroblast cultures. Proc Natl Acad Sci USA 72:1063

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JA, Thomas HJ (1961) Synthesis of potential anticancer agents. XXVII. The ribonucleotides of 6-mercaptopurine and 8-azaguanine. J Org Chem 26:1926–1929

    Article  CAS  Google Scholar 

  • Morr M (1976) Synthese des 5′-thio-3′-amido-5′,3′-didesoxyadenosin-3′,5′-cyclophosphats, ein cAMP-derivat mit s und N im Cyclophosphatring. Tetrahedron Lett 2127–2128

    Google Scholar 

  • Morr M, Ernst L (1978) Zur Reaktion von Aminonucleosiden mit Thiophosphorylierungs-reagenzien. Chem Ber 111:2152–2172

    Article  CAS  Google Scholar 

  • Morr M, Kula M-R, Ernst L (1975) Synthesis and 13C NMR spectra of 3′-amido analogs of adenosine 3′,5′-cyclic monophosphate. Tetrahedron 31:1619–1622

    Article  CAS  Google Scholar 

  • Morr M, Kula M-R, Roesler G, Jastorff B (1974) Synthesis of 3′-amido-3′-deoxyadenosine 3′,5′-cyclophosphate. Angew Chem (Engl) 13:280–281

    Article  CAS  Google Scholar 

  • Morr M, Mengel R (1977) Synthese der cycloamide der xylo-3′-amino-3′-desoxyadenosin-5′-phosphorsäure und-5′-thionophosphorsäure, zweier neuer cAMP-analoga. Chem Ber 110:3947–3949

    Article  CAS  Google Scholar 

  • Moss J, Vaughan M (1979) Activation of adenylate cyclase by choleragen. Ann Rev Biochem 48:581–600

    Article  PubMed  CAS  Google Scholar 

  • Mukaiyama T, Hashimoto M (1972) Synthesis of oligothymidylates and nucleoside cyclic phosphates by oxidation-reduction condensation. J Am Chem Soc 94:8528–8532

    Article  PubMed  CAS  Google Scholar 

  • Muneyama K, Bauer RJ, Shuman DA, Robins RK, Simon LN (1971) Chemical synthesis and biological activity of 8-substituted adenosine 3′,5′-cyclic monophosphate derivatives. Biochemistry 10:2390–2395

    Article  PubMed  CAS  Google Scholar 

  • Muneyama K, Shuman DA, Boswell KH, Robins RK, Simon LN, Miller JP (1974) Synthesis and biological activity of 8-haloadenosine 3′,5′-cyclic phosphates. J Carbohydr Nucleosides Nucleotides 1:55–60

    CAS  Google Scholar 

  • Murad F (1973) Clinical studies and applications of cyclic nucleotides. Adv Cyclic Nucleotide Res 3:355–383

    PubMed  CAS  Google Scholar 

  • Murad F, Rall TW, Vaughan M (1969) Conditions for the formation, partial purification and assay of an inhibor of adenosine 3′,5′-monophosphate. Biochim Biophys Acta 192:430–445

    Article  PubMed  CAS  Google Scholar 

  • Murayama A, Jastorff B, Cramer F, Hettler H (1971) 5′-Amido analogs of adenosine 3′,5′-cyclic monophosphate. J Org Chem 36:2029–3033

    Article  Google Scholar 

  • Murayama A, Jastorff B, Hettler H (1970) Synthesis of 5′-amido analogs of adenosine (3′–5′)-cyclophosphates. Angew Chem (Engl) 9:640–641

    Article  CAS  Google Scholar 

  • Murayama A, Jastorff B, Hettler H, Cramer F (1973) Die Stereoselektivität bei der Synthese von 5′-N-substituierten 5′-amido-analoga des Adenosin-3′,5′-cyclophosphat-p-nitro-phenylesters. Chem Ber 106:3127–3131

    Article  CAS  Google Scholar 

  • Mushika Y, Taguchi Y (1976) Cyclic nucleotides. Japan Kokai 76 65,773

    Google Scholar 

  • Nagyvary J (1969) Arabinonucleotides IL The synthesis of O2, 2′-anhydrocytidine 3′-phosphate, a precursor of 1-β-D-arabinosylcytosine. J Am Chem Soc 91:5409–5410

    Article  CAS  Google Scholar 

  • Nagyvary J, Gohil RN, Kirchner CR, Stevens JD (1973) Studies on neutral esters of cyclic AMP. Biochem Biophys Res Commun 55:1072–1077

    Article  PubMed  CAS  Google Scholar 

  • Nair KG (1966) Purification and properties of 3′,5′-cyclic nucleotide Phosphodiesterase from dog heart. Biochemistry 5:150–157

    Article  PubMed  CAS  Google Scholar 

  • Naito T, Sano M (1965) Adenosine cyclic 3′,5′-phosphate. Japanese Patent 9,063

    Google Scholar 

  • Naka T, Honjo M (1976 a) Synthesis of 8-carbamoyl-and 8-carboxyadenosine 3′,5′-cyclic phosphates. Chem Pharm Bull (Tokyo) 24:2052–2056

    CAS  Google Scholar 

  • Naka T, Honjo M (1976 b) 8-Substituted adenosine-3′,5′-cyclic phosphates. Japan Kokai 76 04,195

    Google Scholar 

  • Nathanson JA, Greengard P (1977) Second messengers in the brain. Sci Am 237:108–119

    Article  CAS  Google Scholar 

  • Nawrath H (1977) Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267:72–74

    Article  PubMed  CAS  Google Scholar 

  • Nawrath H (1978) Rec Adv Stud Card Struct Metab 11:419

    CAS  Google Scholar 

  • Nayler WG (1977) Cyclic nucleotides and the heart. Adv. Drug Res 12:39–51

    PubMed  CAS  Google Scholar 

  • Naylor R, Gilham PT (1966) Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry 5:2722–2728

    Article  PubMed  CAS  Google Scholar 

  • Nedorezova TP, Melnik SYa, Yartseva IV, Preobrazhenskaya MN (1978) (R)-and (S)-2′,3′-O-adamantylphosphonates of purine nucleosides. Bioorg Khim (USSR) 4:1058–1064

    CAS  Google Scholar 

  • Niles RM, Ludwig KW, Makarski JS (1979) Differential growth inhibition in two human carcinoma cell lines by cyclic adenosine 5′-monophosphate analogs. J Natl Cancer Inst 63:909–911

    PubMed  CAS  Google Scholar 

  • Niles RM, Makarski JS, Kurtz MJ, Rutenburg AM (1976) Inhibition of human prostatic epithelial cell replication by cAMP and selcted analogs. Exp Cell Res 102:95–103

    Article  PubMed  CAS  Google Scholar 

  • Nohara A, Imai K, Honjo M (1966) Synthesis of the glucose analogs of inosine-5′ phosphate. Chem Pharm Bull (Tokyo) 14:491–495

    CAS  Google Scholar 

  • Nutt RF, Walton E (1968) Branched-chain sugar nucleosides. IL 5′,5′-Di-C-methyl-adenosine. J Med Chem 11:151–153

    Article  PubMed  CAS  Google Scholar 

  • Oey J, Vogel A, Pollack R (1974) Intracellular cyclic AMP concentration responds specifically to growth regulation by serum. Proc Natl Acad Sci USA 71:694–698

    Article  PubMed  CAS  Google Scholar 

  • Okruszek A, Verkade JG (1979) 2′,3′-Bis(2-chloroethyl)aminophosphoryl-3′-amino-3′-deoxyadenosine: A cyclic nucleotide with antitumor activity. J Med Chem 22:882–885

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JP, Schröder CH, Hsie AW (1975) Hydrolysis of butyryl derivatives of adenosine cyclic 3′,5′-monophosphate by Chinese hamster ovary cell extracts and characterization of the products. J Biol Chem 250:990–995

    PubMed  Google Scholar 

  • Ortiz PJ (1972) The inhibition of E. coli adenyl cyclase by ara ATP. Biochem Biophys Res Commun 46:1728–1733

    Article  PubMed  CAS  Google Scholar 

  • Owens JR, Haley BE (1978) Use of photoaffinity nucleotide analogs to determine the mechanism of ATP regulation of a membrane-bound, cAMP-activated protein kinase. J Supramol Str 9:57–68

    Article  CAS  Google Scholar 

  • Panitz N, Reike E, Morr M, Wagner KG, Roesler G, Jastorff B (1975) The 3′-amido and 5′-amido analogues of adenosine 3′,5′-monophosphate; Interaction with cAMP-specific proteins. Eur J Biochem 55:415–422

    Article  PubMed  CAS  Google Scholar 

  • Panzica RP, Rousseau RJ, Robins RK, Townsend LB (1972) A study on the relative stability and a quantitative approach to the reaction mechanism of the acid-catalyzed hydrolysis of certain 7-and 9-β-D-ribofuranosylpurines. J Am Chem Soc 94:4708–4714

    Article  PubMed  CAS  Google Scholar 

  • Paoletti R, Berti F, Spano PF (1973) Cyclophosphates. V. In vivo metabolic and cardiovascular effects of new cyclophosphates. Pharmacol Res Commun 5:87–100

    Article  CAS  Google Scholar 

  • Pardee AB, de Asua LJ, Rozengurt E (1974) In: Clarkson B, Baserga R (eds) Control of Proliferation of Animal Cells, vol 1. Cold Spring Harbor Conferences on Cell Proliferation, p 547

    Google Scholar 

  • Pastan IH, Johnson GS, Anderson WB (1975) Role of cyclic nucleotides in growth control. Ann Rev Biochem 44:491–522

    Article  PubMed  CAS  Google Scholar 

  • Pike JE, Slechta L, Wiley PF (1964) Tubercidin and related compounds. J Heterocycl Chem 1:159–161

    Article  CAS  Google Scholar 

  • Pischel H, Holý A (1970) Oligonucleotid-verbindungen XXXVII. Synthese einiger nucleotid-derivate von 1-(β-D-ribofuranosyl)pyrimidon-(2) und 3-(β-D-ribofuranosyl)pyrimidon-(4). Coll Czech Chem Commun 35:3584–3596

    CAS  Google Scholar 

  • Pizer FL, Ballou CE (1959) Studies on myo-inositol phosphates of natural origin. J Am Chem Soc 81:915–921

    Article  CAS  Google Scholar 

  • Pogson CI (1974) Guanine nucleotides and their significance in biochemical processes. Am J Clin Nutr 27:380–402

    PubMed  CAS  Google Scholar 

  • Polgar P, Vera JC, Kelley PR, Rutenburg AM (1973) Adenylate cyclase activity in normal and leukemic human leukocytes as determined by a radioimmunoassay for cyclic AMP. Biochim Biophys Acta 297:378–383

    Article  PubMed  CAS  Google Scholar 

  • Porter KR, Puck TT, Hsie AW, Kelley D (1974) An electron microscope study of the effects of dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell 2:145–162

    Article  PubMed  CAS  Google Scholar 

  • Posternak T (1971) Chemistry of cyclic nucleoside phosphates and synthesis of analogs. In: Robison, Butcher, Sutherland (eds) Cyclic AMP. Academic Press, New York, pp 48–71

    Google Scholar 

  • Posternak T (1974) Cyclic AMP and Cyclic GMP. Annu Rev Pharmacol 14:23–33

    Article  CAS  Google Scholar 

  • Posternak T, Falbriard JG (1971) Preparation of cyclic GMP. In: Robison, Butcher, Sutherland (eds) Cyclic AMP. Academic Press, New York

    Google Scholar 

  • Posternak T, Marcus I, Cehovic G (1971) Préparation de nouveaux dérivés de l’AMPs (substitués en position C-8 et C-2) et étude de leur action sur la libération de l’hormone de croissance. CR Acad Sci Paris 272D:622–625

    Google Scholar 

  • Posternak T, Marcus I, Gabbai A, Cehovic G (1969) Préparation et étude de quelques properiétés biologiques d’analogues de l’acide adénosine-3′,5′-phosphorique. CR Acad Sci Paris 269D:2409–2412

    Google Scholar 

  • Posternak T, Sutherland EW, Henion WF (1962) Derivatives of cyclic 3′,5′-adenosine monophosphate. Biochim Biophys Acta 65:558–560

    Article  PubMed  CAS  Google Scholar 

  • Prasad KN, Sheppard JR (1972) Inhibitors of cyclic-nucleotide Phosphodiesterase induce morphological differentiation of mouse neuroblastoma cell culture. Exp Cell Res 73:436–440

    Article  PubMed  CAS  Google Scholar 

  • Preobrazhenskaya NN, Shabarova ZA, Prokofev MA (1967) The synthesis and hydrolytic stability of amino acid derivatives of uridine cyclophosphates. Dokl Akad Nauk SSSR 174:100–103

    CAS  Google Scholar 

  • Price TD, Ashman DF, Melicow MM (1967) Organophosphate of urine, including adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate. Biochim Biophys Acta 138:452–465

    PubMed  CAS  Google Scholar 

  • Prystäs M, Šorm F (1969) Nucleic acid components and their analogues. CXXVII. Synthesis of uridine and cytidine 6-methyl and 5,6-dimethyl derivatives. Coll Czech Chem Commun 34:2316–2347

    Google Scholar 

  • Puck TT (1977) Cyclic AMP, the microtubule-microfilament system, and cancer. Proc Natl Acad Sci USA 74: 4491–4495

    Article  PubMed  CAS  Google Scholar 

  • Puck TT (1979) Studies on cell transformation. Somatic Cell Genet 5:973–990

    Article  PubMed  CAS  Google Scholar 

  • Pullman B, Saran A (1976) Quantum-mechanical studies on the conformation of nucleic acids and their constituents. Progr Nucleic Acid Res Mol Biol 18:215–325

    Article  CAS  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  • Rall TW, Sutherland EW, Berthet J (1957) The relationship of epinephrine and glucagon to liver Phosphorylase. IV. Effect of epinephrine and glucagon on the reaction of phosphorylase in liver homogenates. J Biol Chem 224:463–475

    PubMed  CAS  Google Scholar 

  • Ramseyer J, Kaslow HR, Gill GN (1974) Purification of the cAMP receptor protein by affinity chromatography. Biochem Biophys Res Commun 59:813–821

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan RS, Jones GH, Moffatt JG (1974) Novel Analogs of nucleoside 3′,5′-cyclic phosphates. I. 5′-Mono-and dimethyl analogs of adenosine 3′,5′-cyclic phosphate. J Org Chem 39:290–298

    Article  CAS  Google Scholar 

  • Reddi PK, Constantinides SM (1972) Partial suppression of tumor production by dibutyryl cyclic AMP and theophylline. Nature 238:286–287

    Article  PubMed  CAS  Google Scholar 

  • Reddy BS, Viswamitra MA (1971) Crystal data of an ammonium salt of cyclic cytidine-2′,3′-phosphate. Current Sci 40:625

    CAS  Google Scholar 

  • Revankar GR, Huffman JH, Allen LB, Sidwell RW, Robins RK, Tolman RL (1975) Synthesis and antiviral activity of certain 5′-monophosphates of 9-D-arabinofuranosyl-adenine and 9-D-arabinofuranosylhypoxanthine. J Med Chem 18:721–726

    Article  PubMed  CAS  Google Scholar 

  • Revankar GR, Huffman JH, Sidwell RW, Tolman RL, Robins RK, Allen LB (1976) Synthesis and anti-DNA virus activity of the 5′-monophosphate and the cyclic 3′,5′-mono-phosphate of 9-(β-D-xylofuranosyl)guanine. J Med Chem 19:1026–1028

    Article  PubMed  CAS  Google Scholar 

  • Robbins SJ, Rapp F (1979) Abstracts Mtgs Chem Soc for Microbiology, p 261, Abstract S130, Los Angeles

    Google Scholar 

  • Robins MJ, MacCoss M (1977) Nucleic acid related compounds. 26. A “geometry-only” method for determining the anomeric configuration of nucleosides based on the H-1′ NMR signal of cyclic α and β 3′,5′-mononucleotides. J Am Chem Soc 99:4654–4660

    Article  PubMed  CAS  Google Scholar 

  • Robins MJ, MacCoss M, Wilson JS (1977) nucleic acid related compounds. 27. “Virtual Coupling” of the anomeric proton of cyclic 2′-deoxynucleoside 3′,5′-monophosphates. Reassessment of conformation using praseodymium shifts and assignment of H-2′,2″ signals by biomimetic deuteration at C-2. J Am Chem Soc 99:4660–4666

    Article  PubMed  CAS  Google Scholar 

  • Robins RK (1979) The synthesis and structure activity relationship of analogues and derivatives of 3′,5′-cyclic nucleotides. In: Simkin (ed) Proc 6 th Internati Sym Med Chem, Brighton, UK. Cotswold Press Ltd, Oxford, UK, pp 127–135

    Google Scholar 

  • Robins RK, Khwaja TA (1974) 3′,5′-Cyclic monophosphate nucleosides. US Patent 3,849,397

    Google Scholar 

  • Robins RK, Shuman DA, Boswell KH (1977 a) 6-Aminocarbonyl purine 3′,5′-cyclic nucleotides. US Patent 4,038,480

    Google Scholar 

  • Robins RK, Shuman DA, Boswell KH (1977b) 6,8-Disubstituted purine derivatives of 9-β-D-ribofuranosyl 3′,5′-cyclic phosphate. US Patent 4,058,659

    Google Scholar 

  • Robison GA (1970) Cyclic AMP as a second messenger. J Reprod Fert Suppl 10:55–74

    CAS  Google Scholar 

  • Robison GA (1972) Cyclic AMP and hormone action. Am J Pharm Educ 36:723–733

    CAS  Google Scholar 

  • Robison GA (1975) Cyclic AMP and disease: An overview. In: Good, Day, Yums (eds) Molecular pathology. CC Thomas Publ, Springfield, Ill, pp 394–404

    Google Scholar 

  • Robison GA, Arnold A, Hartmann RC (1969) Divergent effects of epinephrine and prostaglandin E1 on the level of cyclic AMP in human blood platelets. Pharm Res Commun 1:325–332

    Article  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174

    Article  PubMed  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1971 a) Cyclic AMP. Academic Press, New York

    Google Scholar 

  • Robison GA, Nahas GG, Triner L (1971 b) Cyclic AMP and cell function. Ann NY Acad Sci 185:5–556

    Article  PubMed  CAS  Google Scholar 

  • Robison GA, Park CR (1970) Cyclic adenylate in mammalian tissues. In: Ellenberg, Rifkin (eds) Diabetes mellitus: Theory and practise. McGraw-Hill, New York, pp 132–149

    Google Scholar 

  • Robison GA, Sutherland EW (1967) Adenylic acid (cyclic). McGraw Hill Yearbook of Science and Technology, New York, pp 91–92

    Google Scholar 

  • Robison GA, Sutherland EW (1971) On the relation of cyclic AMP to adrenergic receptors and sympathin. Adv Cytopharmacol 1:263–272

    CAS  Google Scholar 

  • Rosario EJ del, Hammes GG (1970) Relaxation spectra of ribonuclease. VII. The interaction of ribonuclease with uridine 2′,3′-cyclic phosphate. J Am Chem Soc 92:1750–1753

    Article  PubMed  Google Scholar 

  • Rosen OM (1970) Interaction of cyclic GMP and cyclic AMP with a cyclic nucleotide phosphodiesterase of the frog erythrocyte. Arch Biochem Biophys 139:447–449

    Article  PubMed  CAS  Google Scholar 

  • Rosett T, Smith JG Jr, Matsuo I, Bailey PA, Smith DB, Surakiat S (1970) The quantitative separation of 3′,5′-cyclic adenosine monophosphate, adenosine-5′-monophosphate, adenosine-5′-diphosphate, and adenosine-5′-triphosphate by ion-exchange chromatography on diethylaminoethyl sephadex. J Chromatogr 49:308–312

    Article  PubMed  CAS  Google Scholar 

  • Rosowsky A, Gohil RN (1978) 6-Amino-9-β-D-arabinofuranosylpurine-8-thiol 3′,5′-cyclic phosphate. Nucleic Acid Chem, Improved and New Synthetic Procedures, Methods, and Techniques, Townsend and Tipson (eds) pt 2. John Wiley and Sons, New York, pp 857–860

    Google Scholar 

  • Rubin CS, Rosen OM (1975) Protein phosphorylation. Ann Rev Biochem 44:831–887

    Article  PubMed  CAS  Google Scholar 

  • Rudland PS, Seeley M, Seifert W (1974) Cyclic GMP and cyclic AMP levels in normal and transformed fibroblasts. Nature 251:417–419

    Article  PubMed  CAS  Google Scholar 

  • Rudolph SA, Johnson EM, Greengard P (1971) The enthalpy of hydrolysis of various 3′,5′-and 2′,3′-cyclic nucleotides. J Biol Chem 246:1271–1273

    PubMed  CAS  Google Scholar 

  • Russell AF, Moffatt JG (1969) Synthesis of some nucleotides derived from 3′-deoxythy-midine. Biochemistry 8:4889–4896

    Article  PubMed  CAS  Google Scholar 

  • Saenger W, Eckstein F (1969) Crystal structure of uridine 2′,3′-O,O-cyclophosphorothioate. Angew Chem (Engl) 8:595–596

    Article  CAS  Google Scholar 

  • Saenger W, Eckstein F (1970) Stereochemistry of a substrate for pancreatic ribonuclease. Crystal and molecular structure of the triethylammonium salt of uridine 2′,3′-O,O-cyclophosphorothioate. J Am Chem Soc 92;4712–4718

    Article  CAS  Google Scholar 

  • Sands H, Rickenberg HV (1978) Assessment of the role of cyclic nucleotides as hormonal mediators. In: Rickenberg HV (ed) Int rev biochim: Biochemistry and mode of action of hormones II, vol 20, University Park Press, Baltimore, Maryland, pp 45–80

    Google Scholar 

  • Saran A, Berthod H, Pullman B (1973) Molecular orbital calculations on the conformation of nucleic acids and their constituents. VIII. Conformations of 2′,3′-and 3′,5′-cyclic nucleotides. Biochim Biophys Acta 331:154–164

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Kodaira R, Nozawa R, Yokota T (1978) Inhibitory effect of 8-substituted adenosine derivatives on Ca++ and modulator protein-dependent Phosphodiesterase activity. Biochem Biophys Res Commun 84:277–284

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Suzuki N, Sowa T, Nozawa R, Yokota T (1976) Effects of 8-substituted adenosine 3′,5′-monophosphate derivatives on high Km phosphodiesterase activity. Biochemistry 15:1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Sasisekharan V, Lakshminarayanan AV, Ramachandran GN (1967) In: Ramachandran (ed) Conformation of biopolymers. Academic Press, New York, pp 641–654

    Google Scholar 

  • Schaeffer HJ, Thomas HJ (1958) Synthesis of potential anticancer agents. XIV. Ribosides of 2,6-disubstituted purines. J Am Chem Soc 80:3738–3742

    Article  CAS  Google Scholar 

  • Scheit KH (1974) Biological and spectroscopic properties of a fluorescent cyclic AMP analogue, 2-aminopurine nucleoside-5′.3′-cyclic phosphate. J Carbohydr Nucleosides Nucleotides 1:385–399

    CAS  Google Scholar 

  • Schmidt MJ, Truex LL, Leonard NJ, Scopes DI, Barrio JR (1978) Effect of lin-ben-zoadenosine and lin-benzoadenosine 3′,5′-monophosphate on cyclic AMP-dependent protein kinase activity in vitro. J Cyclic Nucleotide Res 4:201–207

    PubMed  CAS  Google Scholar 

  • Schweizer MP, Broom AD, Ts’o POP, Hollis DP (1968) Studies of inter-and intramolecular interaction in mononucleotides by proton magnetic resonance. J Am Chem Soc 90:1042–1055

    Article  PubMed  CAS  Google Scholar 

  • Schweizer MP, Robins RK (1973) NMR studies on the conformation of nucleosides and 3′,5′-cyclic nucleotides. Conformation of Biological molecules and polymers. In: Pullman, Bergmann (eds) Proceedings of the Fifth Jerusalem Symposium on Quantum Chemistry and Biochemistry. Academic Press, New York, pp 329–343

    Google Scholar 

  • Scopes DIC, Barrio JR, Leonard NJ (1977) Defined dimensional changes in enzyme cofactors: Fluorescent “stretched-out” analogs of adenine nucleotides. Science 195:296–298

    Article  PubMed  CAS  Google Scholar 

  • Secrist III JA (1974) The synthesis of 1,N6-ethenoadenosine 3′,5′-monophosphate; A fluorescent analog of cyclic AMP. Methods Enzymol 38c:428–430

    Article  Google Scholar 

  • Secrist III JA, Barrio JR, Leonard NJ, Palasi CV, Gilman AG (1972 a) Fluorescent modification of adenosine 3′,5′-monophosphate: Spectroscopic properties and activity in enzyme systems. Science 177:279–280

    Article  PubMed  CAS  Google Scholar 

  • Secrist III JA, Barrio JR, Leonard NJ (1972 b) A fluorescent modification of adenosine triphosphate with activity in enzyme systems: 1,N6-Ethenoadenosine triphosphate. Science 175:646–647

    Article  PubMed  CAS  Google Scholar 

  • Seifert WE, Rudland PS (1974) Possible involvement of cyclic GMP in growth control of cultured mouse cells. Nature 248:138–140

    Article  PubMed  CAS  Google Scholar 

  • Severin ES, Gulyaev NN, Bulargina TV, Kochetkova MN (1979 a) Specific inhibition of cyclic AMP-dependent protein kinase, adenylate cyclase and phosphodiesterase by ATP and cyclic AMP analogs. In: Weber G (ed) Adv. Enzyme Regulation, vol 17. Pergamon Press, New York, p251

    Google Scholar 

  • Severin ES, Nesterova MV, Sashchenko LP, Rasumova VV, Tunitskaya VL, Kochetkov SN, Gulyaev NN (1975) Investigation of the adenosine 3′,5′-cyclic phosphate binding site of pig brain histone kinase with the aid of some analogues of adenosine 3′,5′-cyclic phosphate. Biochim Biophys Acta 384:413–422

    PubMed  CAS  Google Scholar 

  • Severin ES, Sashchenko LP, Kochetkov SN, Gulyaev NN, Kurochkin SN, Trakht IN (1979 b) Structure and mechanism of action of cyclic AMP-dependent protein kinase. In: Krause EG, Pinna L, Wollenberger A (eds) FEBS 12 th Meeting, Dresden 1978, vol 54. Symposium 7, Cyclic Nucleotides and Protein Phosphorylation in Cell Regulation. Pergamon Press, London, p 101

    Google Scholar 

  • Severin ES, Tkachuk VA, Gulyaev NN (1976) Interaction of adenosine-3′,5′-cyclosulfate with adenosine-3′,5′-cyclophosphate-dependent protein kinase and phosphodiesterase. Biokhimiya 41:384–388

    CAS  Google Scholar 

  • Shahak Y, Chipman DM, Shavit N (1973) Photophosphorylation studies with fluorescent adenine nucleotide analogs. FEBS Lett 33:293–296

    Article  PubMed  CAS  Google Scholar 

  • Shapiro R, Danzig M (1972) Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis. Biochemistry 11:23–29

    Article  PubMed  CAS  Google Scholar 

  • Shields R (1974) In: Dumont JE, Brown BL, Marshall NJ (eds) Eukaryotic cell function and growth. Plenum Press, London, p 747

    Google Scholar 

  • Sheldrick WS, Reike E (1978) 8-[(2-Aminoethyl)amino]adenosine cyclic 3′,5′-monophosphate tetrahydrate. Acta Cryst 34B:2324–2327

    Google Scholar 

  • Shen TY (1970) Nucleosides and nucleotides as potential therapeutic agents. Angew Chem (Engl) 9:678–688

    Article  CAS  Google Scholar 

  • Shibuya M, Arai K, Kaziro Y (1975) A novel method for the determination of guanosine 3′,5′-cyclic monophosphate (cyclic GMP). Biochem Biophys Res Commun 62:129–135

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Freedman VH, Risser R, Pollack R (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 72:4435–4439

    Article  PubMed  CAS  Google Scholar 

  • Shiue C-Y, Chu S-H (1975) A convenient one-step synthesis of 6-selenoxo-9-(β-D-ribo-furanosyl)purine 3′,5′-cyclic phosphate and related compounds. J Heterocycl Chem 12:493–500

    Article  CAS  Google Scholar 

  • Shugar D, Wierzchowski KL (1958) Preparation of nucleoside 3′,5′-cyclic phosphates and some ribonucleotide isomers. Bull Acad Polon Sci, Ser Sci Biol 6:283

    CAS  Google Scholar 

  • Shuman DA, Meyer RB Jr (1975) 6-Substituted purine nucleotides. US Patent 3,915,958

    Google Scholar 

  • Shuman DA, Meyer RB Jr, Robins RK (1975) 2,6-Disubstituted purine cyclic nucleotides. US Patent 3,897,413

    Google Scholar 

  • Shuman DA, Meyer RB Jr, Robins RK (1976) 6-Substituted purine 3′,5′-cyclic nucleotides. US Patent 3,948,886

    Google Scholar 

  • Shuman DA, Miller JP, Scholten MB, Simon LN, Robins RK (1973) Synthesis and biological activity of some purine 5′-thio-5′-deoxynucleoside 3′,5′-cyclic phosphorothioates. Biochemistry 12:2781–2786

    Article  PubMed  CAS  Google Scholar 

  • Shuman DA, Robins RK (1974a) 2′-O-Methyladenosine 3′,5′-cyclic phosphate. US Patent 3,816,400

    Google Scholar 

  • Shuman DA, Robins RK (1974 b) Nucleoside 3′,5′-cyclic phosphorothioates. US Patent 3,853,844

    Google Scholar 

  • Sidwell RW, Huffman JH, Allen LB, Meyer RB Jr, Shuman DA, Simon LN, Robins RK (1974) In vitro antiviral activity of 6-substituted 9-β-D-ribofuranosylpurine 3′,5′-cyclic phosphates. Antimicrob Agents Chemother 5:652–657

    PubMed  CAS  Google Scholar 

  • Sidwell R, Huffman J, Shuman D, Muneyama K, Robins R (1972) Cyclic AMP derivatives as antiviral agents. Proceedings of the VIIth Int Cong of Chemotherapy, Prague, 1971, pp 313–314

    Google Scholar 

  • Sidwell RW, Simon LN, Huffman JH, Allen LB, Long RA, Robins RK (1973) DNA virus inhibitory activity of 1-β-D-arabinofuranosylcytosine-3′,5′-cyclic phosphate. Nature New Biol 242:204–206

    PubMed  CAS  Google Scholar 

  • Siggins GR, Henriksen SJ (1975) Analogs of cyclic adenosine monophosphate: Correlation of inhibition of purkinje neurons with protein kinase activation. Science 189:559–560

    Article  PubMed  CAS  Google Scholar 

  • Simon LN, Shuman DA, Robins RK (1973) The chemistry and biological properties of nucleotides related to nucleoside 3′,5′-cyclic phosphates. Adv Cyclic Nucleotide Res 3:225–353

    PubMed  CAS  Google Scholar 

  • Smith ICP, Mantsch HH, Lapper RD, Deslauriers R, Schleich T (1973) A study of the conformations of nucleic acids by carbon-13 and hydrogen nuclear magnetic resonance spectroscopy. In: Pullman, Bergman (ed) 5th Jerusalem Symposium on Quantum Chem Biochem. Academic Press, New York, pp 381–401

    Google Scholar 

  • Smith M (1964) Synthesis of deoxyribonucleoside-3′,5′-cyclic phosphates by base-catalysed transesterification. J Am Chem Soc 86:3586

    Article  CAS  Google Scholar 

  • Smith M, Drummond GI, Khorana HG (1961) Cyclic phosphates. IV. Ribonucleoside-3′,5′-cyclic phosphates. A general method of synthesis and some properties. J Am Chem Soc 83:698–706

    Article  CAS  Google Scholar 

  • Smith M, Jardetzky CD (1968) The NMR spectra and conformation of the nucleotide 3′,5′-cyclic phosphates. J Mol Spectroscopy 28:70–80

    Article  CAS  Google Scholar 

  • Smith M, Khorana HG (1959) Specific synthesis of the C5-C3′ interribonucleotide linkage: The synthesis of uridylyl-(5′→3′)-uridine. J Am Chem Soc 81:2911–2912

    Article  CAS  Google Scholar 

  • Smith M, Moffatt JG, Khorana HG (1958) Carbodiimides. VIII. Observations on the reactions of carbodiimides with acids and some new applications in the synthesis of phosphoric acid esters. J Am Chem Soc 80:6204–6212

    Article  CAS  Google Scholar 

  • Smith SW, Werthamer S, Artman M (1974) Differential effects of dibutyryl cyclic AMP on the growth and morphology of an established human lymphocyte line. In Vitro 10:225–229

    Article  PubMed  CAS  Google Scholar 

  • Smrt J (1967) Oligonucleotidic compounds. XVI. Synthesis of 5,6-dihydrouridine analogues of guanylyl-(3′→5′)-uridylyl-(3′→5′)-uridine. Coll Czech Chem Commun 32:198–205

    CAS  Google Scholar 

  • Smrt J (1974) A remark on the preparation of protected guanosine 3′-phosphate by means of a mixture of ribonucleases T1 and T2. Coll Czech Chem Commun 39:969–971

    CAS  Google Scholar 

  • Sowa T, Suzuki N, Sasaki Y, Yokota T (1976) Cyclic adenosine monophosphate derivative. Japan Kokai 76 41,388

    Google Scholar 

  • Stadel JM, Goodman DBP (1978) 8-p-Chlorophenylthio-cyclic AMP: A potent partial simulator of antidiuretic hormone action. J Cyclic Nucleotide Res 4:35–43

    PubMed  CAS  Google Scholar 

  • Stanwick TL, Nahmias AJ (1979) Abstracts, Mtgs Am Soc for Microbiology, p 290, Abstract No. S306 Los Angeles

    Google Scholar 

  • Steiner AL, Ferrendelli JA, Kipnis DM (1972 c) Radio-immunoassay for cyclic nucleotides. III: Effects of ischemia, changes during development and regional distribution of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mouse brain. J Biol Chem 247:1121–1124

    PubMed  CAS  Google Scholar 

  • Steiner AL, Pagliara AS, Chase LR, Kipnis DM (1972 b) Radioimmunoassay of cyclic nucleotides. IL Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids. J Biol Chem 247:1114–1120

    PubMed  CAS  Google Scholar 

  • Steiner AL, Parker CW, Kipnis DM (1972 a) Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem 247:1106–1113

    PubMed  CAS  Google Scholar 

  • Steiner AL, Kipnis DM, Utiger R, Parker C (1969) Radioimmunoassay for the measurement of adenosine 3′,5′-cyclic phosphate. Proc Natl Acad Sci USA 64:367–373

    Article  PubMed  CAS  Google Scholar 

  • Steiner RF (1972) The activity of ε-adenosine derivatives as allosteric modifiers of phosphorylase b. FEBS Lett 23:139–141

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Lipscomp WN (1965) Molecular structure of methyl ethylene phosphate. J Am Chem Soc 87:2488–2489

    Article  CAS  Google Scholar 

  • Stevens RH, Smith DD, Osborne JW, Oberley LW (1976) Adenosine 3′,5′-cyclic monophosphate levels in x-ray-induced small-bowel adenocarcinoma in the rat. J Natl Cancer Inst 57:43–45

    PubMed  CAS  Google Scholar 

  • Straus DB, Fresco JR (1965) Synthesis of N-benzoyl-2′-O-tetrahydropyranylguanosine-phosphate, an intermediate in the chemical synthesis of polyriboguanylic acid. J Am Chem Soc 87:1364–1374

    Article  PubMed  CAS  Google Scholar 

  • Su J-C, Hassid WZ (1962) Carbohydrates and nucleotides in the red alga Porphyra perforate. II. Separation and identification of nucleotides. Biochemistry 1:474–480

    Article  PubMed  CAS  Google Scholar 

  • Suehiro H, Kikugawa K, Ichino M, Nakamura T (1976) 2-Substituted thioadenosine-5′-monophosphates. Japan Kokai 76 76,291

    Google Scholar 

  • Sundaralingam M (1975) Structure and conformation of nucleosides and nucleotides and their analogs as determined by x-ray diffraction. Ann NY Acad Sci 255:3–42

    Article  PubMed  CAS  Google Scholar 

  • Sundaralingam M, Abola J (1972 a) Molecular conformation of adenosine 3′,5′-monophosphate monohydrate. Nature New Biol 235:244–245

    PubMed  CAS  Google Scholar 

  • Sundaralingam M, Abola J (1972 b) Stereochemistry of nucleic acids and their constituents. XXVII. The crystal structure of 5′-methyleneadenosine 3′,5′-cyclic monophosphonate monohydrate, a biologically active analog of the secondary hormonal messenger cyclic adenosine 3′,5′-monophosphate. Conformational “rigidity” of the furanose ring in cyclic nucleotides. J Am Chem Soc 94:5070–5076

    Article  PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1957) The properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg++, and epinephrine or glucagon. J Am Chem Soc 79:3608

    Article  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Robison GA (1966) Metabolic effects of catecholamines. A. The role of cyclic-3′,5′-AMP in responses to catecholamines and other hormones. Pharmacol Rev 18:145–161

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Robison GA, Butcher RW (1968) Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation 37:279–306

    CAS  Google Scholar 

  • Suzaki S, Yamazaki A, Kamimura A, Mitsugi K, Kumashiro I (1970) Synthesis of 9-β-D-xylofuranosyl-6-mercaptopurine and 9-β-D-xylofuranosylguanine 5′-phosphate. Chem Pharm Bull (Tokyo) 18:172–176

    CAS  Google Scholar 

  • Suzuki T, Kambayashi M, Matsuishi N (1972) 2′,3′-Dibutyrylriboflavin cyclic-4′,5′-phosphate. Japan Patent 72 08,316

    Google Scholar 

  • Swislocki NI (1970) Decomposition of dibutyryl cyclic AMP in aqueous buffers. Anal Biochem 38:260–269

    Article  PubMed  CAS  Google Scholar 

  • Symons RH (1970) 32P-3′,5′-cyclic AMP: A simple preparative procedure. Biochem Biophys Res Commun 38:807–870

    Article  PubMed  CAS  Google Scholar 

  • Symons RH (1973) Improved synthesis of 32P-labelled 3′,5′-cyclic AMP, 3′,5′-cyclic GMP and other 3′,5′-cyclic ribo-and deoxyribonucleotides of high specific activity. Biochim Biophys Acta 320:535–539

    Article  PubMed  CAS  Google Scholar 

  • Symons RH (1974) The synthesis of [32P]adenosine 3′,5′-cyclic phosphate and other ribo-and deoxyribonucleoside 3′,5′-cyclic phosphates. Methods Enzymol 38:410–420

    Article  PubMed  CAS  Google Scholar 

  • Szabó P, Szabó L (1958) Alkaline hydrolysis of methyl α-D-glucoside 4,6-phosphate. Compt Rend 247:1748–1750

    Google Scholar 

  • Szaduykis-Szadurski Berti F (1972) Smooth muscle relaxing activity of 8-bromoguanosine-3′,5′-monophosphate. Pharmacol Res Commun 4:53–61

    Article  CAS  Google Scholar 

  • Szer W, Shugar D (1963) Ribonucleoside 2′,3′-cyclic phosphates. Biochem Prep 10:139–144

    CAS  Google Scholar 

  • Taguchi Y, Mushika Y (1975) Synthetic studies on phosphorylating reagents. IV. A novel synthesis of nucleoside-3′,5′-cyclic phosphates by the use of 2-(N,N-dimethylamino)-4-nitrophenyl phosphate. Bull Chem Soc (Japan) 48:1528–1532

    Article  CAS  Google Scholar 

  • Taguchi Y, Sishimura N, Kakimoto T, Mushika Y (1976) Synthetic studies on phosphorylating reagents. V. A convenient synthesis of 2′,3′-cyclic coenzyme A. Bull Chem Soc (Japan) 49:1122–1125

    Article  CAS  Google Scholar 

  • Takaku H, Kato M, Hata T (1978) Preparation of nucleoside 3′,5′-cyclic phosphates via 8-quinolyl nucleoside 5′-phosphates as a useful intermediate. Chemistry Lett 181–184

    Google Scholar 

  • Tanaka K (1960) A simple preparative method for ribonucleoside-2′,3′-cyclic phosphates. J Biochem (Tokyo) 47:398–399

    CAS  Google Scholar 

  • Tazawa I, Tazawa S, Alderfer JL, Ts’o POP (1972) A novel procedure for the synthesis of 2′-O-alkyl nucleotides. Biochemistry 11:4931–4937

    Article  PubMed  CAS  Google Scholar 

  • Tener GM, Khorana HG (1955) Cyclic Phosphates. II. Further studies of ribonucleoside 2′,3′-cyclic phosphates. J Am Chem Soc 77:5349–5351

    Article  CAS  Google Scholar 

  • Tener GM, Khorana HG, Markham R, Pol EH (1958) Studies on polynucleotides. II. The synthesis and characterization of linear and cyclic thymidine oligonucleotides. J Am Chem Soc 80:6223–6230

    Article  CAS  Google Scholar 

  • Tesser GI, Fisch H, Schwyzer R (1972) Limitations of affinity chromatography: Sepharosebound cyclic 3′,5′-adenosine monophosphate. FEBS Lett 23:56–58

    Article  PubMed  CAS  Google Scholar 

  • Tewari R, Danyluk SS (1978) Configurational effects on conformational properties of cyclic nucleotides. I. Theoretical calculations of conformer preferences in α-nucleoside 3′,5′-cyclic monophosphates. Biopolymers 17:1181–1196

    Article  CAS  Google Scholar 

  • Thomas HJ, Hewson K, Montgomery JA (1962) The 2′(3′)-phosphates of 6-mercaptopurine ribonucleoside and 8-azaguanosine. J Org Chem 27:192–194

    Article  CAS  Google Scholar 

  • Thomas HJ, Montgomery JA (1968) Derivatives and analogs of 6-mercaptopurine ribonucleotide. J Med Chem 11:44–48

    Article  PubMed  CAS  Google Scholar 

  • Tikhomirova-Sidorova NS, Kogan ÉM, Sysoev VA, Ustyuzhanin GE (1971) Alcoholysis of pyrimidine nucleoside 2′,3′-cyclophosphates with purine nucleosides in frozen solutions in presence of pancreatic ribonuclease. Zh Obshch Khim 41:2570–2575

    CAS  Google Scholar 

  • Tikhomirova-Sidorova NS, Kogan ÉM, Ustyuzhanin GE (1973) Synthesis of pyrimidine oligonucleotides in frozen solutions in presence of pancreatic ribonuclease. Zh Obshch Khim 43:393–399

    CAS  Google Scholar 

  • Tisdale MJ (1979) The significance of cyclic AMP and cyclic GMP in cancer treatment. Cancer Tratment Rev 6:1–15

    Article  CAS  Google Scholar 

  • Tisdale MJ, Phillips BJ (1974) Apparent correlation between adenosine 3′,5′-cyclic monophosphate levels and malignancy in somatic cell hybrids. Exp Cell Res 88:111–120

    Article  PubMed  CAS  Google Scholar 

  • Tovey MG, Rochette-Egly C, Castagna M (1979) Effect of interferon on concentration of cyclic nucleotides in cultured cells. Proc Natl Acad Sci USA 76:3890–3893

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW (1977) Cyclic AMP and contractile activity in heart. Adv Cyclic Nucleotide Res 8:363–420

    PubMed  CAS  Google Scholar 

  • Ts’o POP (1974) Bases, nucleosides, and nucleotides. In: Ts’o POP (ed) Basic principles in nucleic acid chemistry, vol 1. Academic Press, Inc, New York, pp 453–584

    Google Scholar 

  • Ts’o POP, Kondo NS, Schweizer MP, Hollis DP (1969) Studies of the conformation and interaction in dinucleoside mono-and diphosphates by proton magnetic resonance. Biochemistry 8:997–1029

    Article  CAS  Google Scholar 

  • Tsou KC, Yip KF, Miller EE, Lo KW (1974) Synthesis of 1,N6-etheno-2-aza-adenosine (2-aza-ε-adenosine): a new cytotoxic fluorescent nucleoside. Nucleic Acids Res 1:531–547

    Article  PubMed  CAS  Google Scholar 

  • Tunitskaya VL, Gulyaev NN, Poletaev AI, Severin ES (1977) Study of conformation of cyclic adenosine-3′,5′-monophosphate and some of its derivatives by the method of circular dichroism. Biokhimiya 42:746–753

    CAS  Google Scholar 

  • Turner AF, Khorana HG (1959) Studies on polynucleotides. VI. Experiments on the chemical polymerization of mononucleotides. Oligonucleotides derived from thymidine-3′ phosphate. J Am Chem Soc 81:4651–4656

    Article  CAS  Google Scholar 

  • Ueda T, Fox JJ (1967) The mononucleotides. In: Wolfrom, Tipson (eds) Advances in carbohydrate chemistry, vol 22. Academic Press, New York, pp 307–419

    Google Scholar 

  • Ueda T, Imazawa M, Miura K, Iwata R, Odajima K (1971) A facile conversion of amino to thiono group in certain nucleobases. Tetrahedron Lett 2507–2510

    Google Scholar 

  • Ueda T, Kawai I (1970) A convenient synthesis of ribonucleoside 2′,3′-cyclic phosphates from ribonucleosides and ribonucleotides. Chem Pharm Bull (Tokyo) 18:2303–2308

    CAS  Google Scholar 

  • Uesugi S, Tanaka S, Ikehara M (1979) Carbon-13 NMR spectra of nucleoside 3′,5′-cyclic phosphates. Proposition for revised signal assignments. Org Magnetic Resonance 12:143–145

    Article  CAS  Google Scholar 

  • Ukita T, Hayatsu H (1961) Organic phosphates. XVIII. Synthesis of lyxouridine 2′,3′-cyclic phosphate and related compounds. Chem Pharm Bull (Tokyo) 9:1000–1005

    CAS  Google Scholar 

  • Uno H, Meyer RB Jr, Shuman DA, Robins RK, Simon LN, Miller JP (1976) Synthesis of some 1,8-and 2,8-disubstituted derivatives of adenosine cyclic 3′,5′-phosphate and their interaction with some enzymes of cAMP metabolism. J Med Chem 19:419–422

    Article  PubMed  CAS  Google Scholar 

  • Usher DA, Dennis EA, Westheimer FH (1965) Calculation of the bond angles and conformation of methyl ethylene phosphate and related compounds. J Am Chem Soc 87:2320–2321

    Article  CAS  Google Scholar 

  • van Boom JH, Burgers PM, Deursen P (1974) Preparation of nucleoside 3′,5′-cyclic phosphates via phosphotriester intermediates. J Chem Soc Chem Commun 618–619

    Google Scholar 

  • van Boom JH, Burgers PMJ, Haasnoot CAG (1976) Synthesis of 3′-phosphates of diribonu-cleoside monophosphates via phosphotriester intermediates. Nucleic Acids Res 3:2731–2747

    PubMed  Google Scholar 

  • von Boom JH, Haasnoot CAG (1975) Preparation of respectively 5′-phosphoryladenylyl-(3′–5′)-uridine 2′,3′-cyclic phosphate, 3′-phosphate and 2′/3′-phosphates exclusively via phosphotriester intermediates. Nucleic Acids Res. Sp Publ sl 17–120

    Google Scholar 

  • van Boom JH, de Rooy JFM, Reese CB (1973) The synthesis of oligoribonucleotides. Part X. Preparation of 2′,3′-cyclic phosphates of ribonucleosides and diribonucleoside phosphates via phosphotriester intermediates. J Chem Soc, Perkin Trans 1:2513–2517

    Article  Google Scholar 

  • Verheyden JPH, Moffatt JG (1970) Halo sugar nucleosides. II. Iodination of secondary hydroxyl groups of nucleosides with methyltriphenoxyphosphonium iodide. J Org Chem 35:2868–2877

    Article  PubMed  CAS  Google Scholar 

  • Viscontini M, Furuta Y (1973) Über Pterinchemie 43. Synthese von D-Neopterin-3′-phosphat und D-Neopterin-2′,3′-cyclophosphat. Betrachtungen über die Biopterinbiogenese. Helv Chim Acta 56:1819–1825

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3765

    PubMed  CAS  Google Scholar 

  • Watenpaugh K, Dow J, Jensen LH, Furberg S (1968) Crystal and molecular structure of adenosine 3′,5′-cyclic phosphate. Science 159:206–207

    Article  PubMed  CAS  Google Scholar 

  • Weber JM, Stewart RB (1975) Cyclic AMP potentiation of interferon antiviral activity and effect of interferon on cellular cyclic AMP levels. J Gen Virology 28:363–372

    Article  CAS  Google Scholar 

  • Wechter WJ (1967) Nucleic acids. I. The synthesis of nucleotides and dinucleoside phosphates containing ara-cytidine. J Med Chem 10:762–773

    Article  PubMed  CAS  Google Scholar 

  • Wechter WJ (1969) Nucleic acids. VIII. Synthesis and chemistry of ara-cytidine 2′,5′-cyclic phosphate. Phosphate anisotropy. J Org Chem 34:244–247

    Article  PubMed  CAS  Google Scholar 

  • Weimann G, Haid E, Mühlegger K, Bergmeyer HU, Dietmann K, Michal G, Hochstetter MN (1973) 6-Substituted purineribonucleoside 3′,5′-cyclophosphates. US Patent No 3,712,885

    Google Scholar 

  • Weiss B (1975) Cyclic nuceotides and disease. University Park Press, Baltimore

    Google Scholar 

  • Westheimer FH (1957) Studies of the solvolysis of some phosphate esters. Chem Soc (London), Spe Publ 8:1–15

    Google Scholar 

  • Westheimer FH (1968) Pseudo-rotation in the hydrolysis of phosphate esters. Acc Chem Res 1:70–78

    Article  CAS  Google Scholar 

  • White AA, Aurbach GE, Carlson SJ (1969) Identification of guanyl cyclase in mammalian tissues. Fed Proc 28:473

    Google Scholar 

  • Wieker H-J, Witzel H (1967) Zum Mechanismus der Ribonuclease-Reaktion 3. Zuordnung der kinetischen Parameter k+1, k−1 k+2 und interpretation von Km. Eur J Biochem 1:251–258

    Article  PubMed  CAS  Google Scholar 

  • Wierenga W, Woltersom JA (1977) An efficient preparation of cyclic CMP and conversion to its dibutyryl and succinyl derivatives. J Carbohydr Nucleosides Nucleotides 4:189–198

    CAS  Google Scholar 

  • Wilchek M, Salomon Y, Lowe M, Selinger Z (1971) Conversion of protein kinase to a cyclic AMP independent form by affinity chromatography on N6-caproyl 3′,5′-cyclic adenosine monophosphate-sepharose. Biochem Biophys Res Commun 45:1117–1183

    Article  Google Scholar 

  • Willingham MC, Pastan I (1975) Cyclic AMP modulates microvillus formation and agglutinability in transformed and normal mouse fibroblasts. Proc Natl Acad Sci USA 72:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Winkley MW, Robins RK (1968) Pyrimidine nucleoside. I. The synthesis of 6-methylcytidine, 6-methyluridine, and related 6-methylpyrimidine nucleosides. J Org Chem 33:2822–2827

    Article  PubMed  CAS  Google Scholar 

  • Witkowski JT, Robins RK, Sidwell RW, Simon LN (1972) Design, synthesis, and broad spectrum antiviral activity of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J Med Chem 15:1150–1154

    Article  PubMed  CAS  Google Scholar 

  • Woenckhaus C, Pfleiderer G (1965) Biochemische Eigenschaften der coenzymanaloga nicotinamid-purin-dinucleotid, nicotinamid-1-desazapurine-dinucleotid und nicotinamid-benzimidazol-dinucleotid. Biochem Z 341:495–501

    CAS  Google Scholar 

  • Woods WD, Waitzman MB (1970) Isolation of cyclic 3′,5′-adenosine monophosphate on a neutral silicic acid-glass microfiber matrix. J Chromatogr 47:536–542

    Article  PubMed  CAS  Google Scholar 

  • Yagura TS, Sigman CC, Sturm PA, Reist EJ, Johnson HL, Miller JP (1980) Mapping cyclic AMP binding sites on type I and type II cyclic AMP-dependent protein kinases using 2-substituted derivatives of cyclic AMP. Biochem Biophys Res Commun 92:463–469

    Article  PubMed  CAS  Google Scholar 

  • Yamaji N, Ishiyama J, Kato M, Yoshida F (1977a) 1,N6-Etheno-2-thio-adenosine-3′,5′-cyclic phosphoric acids and their salts. Japan Kokai 77 00,296

    Google Scholar 

  • Yamaji N, Ishiyama J, Kato M, Yoshida F (1977b) 1,N6-Etheno-2-aminoadenosine 3′,5′-cyclic phosphate. Japan Kokai 77 25,798

    Google Scholar 

  • Yamaji N, Ishiyama J, Kato M, Yoshida F (1977c) 1,N6-Etheno-2-thioadenosine 3′,5′-cyclic phosphate and its S-alkyl derivatives. Japan Kokai 77 53,897

    Google Scholar 

  • Yamaji N, Ishiyama J, Kato M, Yoshida F (1977d) 1,N6-Etheno-2-hydroxyadenosine 3′,5′-cyclic phosphate. Japan Kokai 77 77,094

    Google Scholar 

  • Yamaji N, Ishiyama J, Kato M, Yoshida F (1978) 1,N6-Etheno-2-substituted-adenosine-3′,5′-cyclic phosphoric acids. Japan Kokai 78 12,891

    Google Scholar 

  • Yamaji N, Kato M (1975) The synthesis of 2-aza-adenosine-3′,5′-cyclic phosphate via 1,N6-etheno-adenosine-3′,5′-cyclic phosphate. Chem Lett 311–314

    Google Scholar 

  • Yamaji N, Kato M (1978a) 1,N6-Etheno-2-substituted-adenosine-3′,5′-cyclic phosphoric acids. Japan Kokai 78 12,892

    Google Scholar 

  • Yamaji N, Kato M (1978 b) 2-Substituted adenosine 3′,5′-cyclic phosphoric acids. Japan Kakai 78 46,998

    Google Scholar 

  • Yamaji N., Katoh M, Ishiyama J, Yoshida F (1976 a) 2-Azapurines. Japan Kokai 76 70,793

    Google Scholar 

  • Yamaji N, Suda K, Kato M (1976 b) The synthesis of 2-substituted adenosine-3′,5′-cyclic phosphate via 1,N6-etheno-adenosine-3′,5′-cyclic phosphate. Nucleic Acids Res, Sp Publ No. 2, s 59–62

    Google Scholar 

  • Yamaji N, Suda K, Oneue Y, Kato M (1977 e) Studies on the synthesis of compounds related to adenosine 3′,5′-cyclic phosphate. II. Removal of etheno group of 2-substituted 1,N6-etheno-adenosine 3′,5′-cyclic phosphates. Chem Pharm Bull (Tokyo) 25:3239–3246

    CAS  Google Scholar 

  • Yamaji N, Tahara K, Kato M (1980) Studies on the synthesis of compounds related to adenosine 3′,5′-cyclic phosphate. IV. The synthesis of 2-sulfo-and 2-carboxy-adenosine 3′,5′-cyclic phosphate. Chem Pharm Bull (Tokyo) 28:115–119

    CAS  Google Scholar 

  • Yamaji N, Yuasa Y, Kato M (1976 c) The synthesis of 2-substituted 1,N6-etheno-adenosine-3′,5′-cyclic phosphate by ring reclosure of alkali-hydrolizate of 1,N6-etheno-adenosine-3′,5′-cycric phosphate. Chem Pharm Bull (Tokyo) 24:1561–1567

    CAS  Google Scholar 

  • Yamazaki A, Okutsu M (1978) Cyclization of 5-amino-1-β-D-ribofuranosylimidazole-4-car-boxamide (AICA-riboside): A review. J Heterocycl Chem 15:353–358

    Article  CAS  Google Scholar 

  • Yathindra N, Sundaralingam M (1974) Conformations of cyclic 3′,5′-nucleotides. Effect of the base on the syn-anti conformer distribution. Biochem Biophys Res Commun 56:119–126

    Article  PubMed  CAS  Google Scholar 

  • Yip KF, Tsou KC (1973) Synthesis of fluorescent adenosine derivatives. Tetrahedron Lett 3087–3090

    Google Scholar 

  • Yoshikawa M, Kato T, Takenishi T (1967) A novel method for phosphorylation of nucleosides to 5′-nucleotides. Tetrahedron Lett 5065–5068

    Google Scholar 

  • Yoshikawa M, Kato T, Takenishi T (1969) Studies of phosphorylation. III. Selective phosphorylation of unprotected nucleosides. Bull Chem Soc (Japan) 42:3505–3508

    Article  CAS  Google Scholar 

  • Yung NC, Fox JJ (1961) Nucleosides. X. Anhydronucleosides and related compounds derived from 2′,5′-di-O-trityluridine. J Am Chem Soc 83:3060–3066

    Article  CAS  Google Scholar 

  • Zeilig CE, Goldberg ND (1977) Cell-cycle-related changes of 3′,5′-cyclic GMP levels in novikoff hepatoma cells. Proc Natl Acad Sci USA 74:1052–1956

    Article  PubMed  CAS  Google Scholar 

  • Zielinski WS, Hynie S, Smrt J (1978) Synthesis of adenosine 3′,5′-cyclic phosphate P-(2-hydroxyethyl)ester and its action as activator of protein kinase. Coll Czech Chem Commun 43:1655–1659

    CAS  Google Scholar 

  • Zielinski WS, Smrt J, Beránek J (1974) Novel preparation of cytidine 5′-phosphate and cytidine 3′,5′-cyclic phosphate. Coll Czech Chem Commun 39:3560–3563

    Google Scholar 

  • Zimmerman TP (1979) Nucleoside 3′,5′-cyclic monophosphate metabolites of purine analogs. Biochem Pharmacol 28:2533–2539

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman TP, Rideout JL, Wolberg G, Duncan GS, Elion GB (1976) 2-Fluoroadenosine 3′,5′-monophosphate. J Biol Chem 251:6757–6766

    PubMed  CAS  Google Scholar 

  • Zmudzka B, Szer W, Shugar D (1962) Preparation and chemical and enzymic properties of phosphate esters of 1-(β-D-glucopyranosyl)-uracil and thymine. Acta Biochim Polonica 9:321–341

    CAS  Google Scholar 

  • Zoller MJ, Kerlavage AR, Taylor SS (1979) Structural comparisons of cAMP-dependent protein kinases I and II from porcine skeletal muscle. J Biol Chem 254:2408–2412

    PubMed  CAS  Google Scholar 

  • Zoltewicz JA, Clark DF (1972) Kinetics and mechanism of the hydrolysis of guanosine and 7-methylguanosine nucleosides in perchloric acid. J Org Chem 37:1193–1197

    Article  PubMed  CAS  Google Scholar 

  • Zoltewicz JA, Clark DF, Sharpless TW, Grahe G (1970) Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J Am Chem Soc 92:1741–1750

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Revankar, G.R., Robins, R.K. (1982). Chemistry of Cyclic Nucleotides and Cyclic Nucleotide Analogs. In: Nathanson, J.A., Kebabian, J.W. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68111-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68111-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68113-4

  • Online ISBN: 978-3-642-68111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics