Advertisement

Ganglionic Activity of Cardiovascular Drugs

  • D. M. Aviado
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 53)

Abstract

Since the major use of ganglion-blocking drugs is in the treatment of cardiovascular disease, it is necessary to discuss the interaction between these blocking drugs and cardiovascular drugs. This section will examine three form of pharmacological actions and interactions: first, the effect of cardiovascular drugs on the autonomic ganglia; second, the influence of ganglionic blockade on the haemodynamic action of cardiovascular drugs; and third, the influence of cardiovascular drugs on the hypotensive action of ganglion-blocking drugs.

Keywords

Adrenal Medulla Sympathetic Ganglion Cardiovascular Drug Superior Cervical Ganglion Tyrosine Hydroxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeletti, P.U., Levi-Montalcini, R., Caramia, F.: Structural and ultrastructural changes in developing sympathetic ganglia induced by guanethidine. Brain Res. 43, 515–525 (1972)PubMedCrossRefGoogle Scholar
  2. Aviado, D.M.: Norepinephrine. In: Sympathomimetic drugs. Springfield: Thomas 1970Google Scholar
  3. Barany, E.H., Treister, G.: Time relations of degeneration mydriasis and degeneration vasoconstriction in the rabbit ear after sympathetic denervation. Effect of bretylium. Acta Physiol. Scand. 80, 79–92 (1970)PubMedCrossRefGoogle Scholar
  4. Black, I.B., Geen, S.C.: Trans-synaptic regulation of adrenergic neuron development: inhibition by ganglionic blockade. Brain Res. 63, 291–302 (1973)PubMedCrossRefGoogle Scholar
  5. Boyajy, L.D., Nash, C.B.: Alteration of ouabain toxicity by cardiac denervation. Toxicol. Appl. Pharmacol. 9, 199–208 (1966)PubMedCrossRefGoogle Scholar
  6. Burnstock, G., Evans, B., Gannon, B.J., Heath, J.W., James, V.: A new method of destroying adrenergic nerves in adult animals using guanethidine. Br. J. Pharmacol. 43, 295–301 (1971)PubMedGoogle Scholar
  7. Caramia, F., Angeletti, P.U., Levi-Montalcini, R., Carratelli, L.: Mitochondrial lesions of developing symphatetic neurons induced by bretylium tosylate. Brain Res. 40, 237–246 (1972)PubMedCrossRefGoogle Scholar
  8. Downing, O.A., Juul, P.: The effect of guanethidine pretreatment on transmission in the superior cervical ganglion. Acta Pharmacol. Toxicol. 32, 369–381 (1973)CrossRefGoogle Scholar
  9. Eranko, L., Eranko, O.: Effect of guanethidine on nerve cells and small intensely fluorescent cells in sympathetic ganglia of newborn and adult rats. Acta Pharmacol. Toxicol. (Kbn) 30, 403–416 (1971 a)CrossRefGoogle Scholar
  10. Eranko, O., Eranko, L.: Histochemical evidence of chemical sympathectomy by guanethidine in newborn rats. Histochem. J. 3, 451–456 (1971 b)PubMedCrossRefGoogle Scholar
  11. Farr, W.C., Grupp, G.: Sympathetically mediated effects of angiotensin on the dog heart in situ. J. Pharmacol. Exp. Ther. 156, 528–537 (1967)PubMedGoogle Scholar
  12. Farr, W.C., Grupp, G.: Ganglionic stimulation: mechanism of the positive inotropic and chronotropic effects of angiotensin. J. Pharmacol. Exp. Ther. 177, 48–55 (1971)PubMedGoogle Scholar
  13. Hamer, J., Jackson, E.: The effect of ganglionic blockade on the pressor response to angiotensin in systemic hypertension. Cardiovasc. Res. 3, 411–414 (1969)PubMedCrossRefGoogle Scholar
  14. Heath, J., Eranko, O., Eranko, L.: Effect of guanethidine on the ultrastructure of the small, granule-containing cells in cultures of rat sympathetic ganglia. Acta Pharmacol. Toxicol. (Kbn.) 33, 209–218 (1973)CrossRefGoogle Scholar
  15. Hill, C.E., Mark, G.E., Eranko, O., Eranko, L., Burnstock, G.: Use of tissue culture to examine the actions of guanethidine and 6-hydroxydopamine. Eur. J. Pharmacol. 23, 162–174 (1973)PubMedCrossRefGoogle Scholar
  16. Jaramillo, J., Volle, R.L.: Ganglionic blocking properties of the diuretic agent amiloride hydrochloride. Arch. Int. Pharmacodyn. Ther. 177, 298–310 (1969)PubMedGoogle Scholar
  17. Jenson-Holm, J., Juul, P.: The effects of guanethidine, pre- and postganglionic nerve division on the rat superior cervical ganglion: cholinesterases and catecholamines (histochemistry), and histology. Acta Pharmacol. Toxicol. (Kbn.) 28, 283–298 (1970)CrossRefGoogle Scholar
  18. Joh, T.H., Geghman, C., Reis, D.: Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reser-pine. Proc. Natl. Acad. Sci. USA 70, 2767–2771 (1973)PubMedCrossRefGoogle Scholar
  19. Juul, P.: Effects of various antihypertensive guanidine derivatives on the adult rat superior cervical ganglion: histology, ultrastructure, and Cholinesterase histochemistry. Acta Pharmacol. Toxicol. (Kbn.) 32, 500–512 (1973a)CrossRefGoogle Scholar
  20. Juul, P.: Accumulation of guanethidine by sympathetic ganglia of reserpinized rats. Acta Pharmacol. Toxicol. (Kbh.) 33, 79–80 (1973 b)CrossRefGoogle Scholar
  21. Juul, P., Mclsaac, R.L.: The effect on guanethidine on the noradrenaline content of the adult rat superior cervical ganglion. Acta Pharmacol. Toxicol. (Kbh.) 32, 382–389 (1973)CrossRefGoogle Scholar
  22. Juul, P., Sand, O.: Determination of guanethidine in sympathetic ganglia. Acta Pharmacol. Toxicol. (Kbh.) 32, 487–499 (1973)CrossRefGoogle Scholar
  23. Kato, A.C., Katz, H.S., Collier, B.: Absence of adenine nucleotide release from autonomic ganglion. Nature 249, 576–577 (1974)PubMedCrossRefGoogle Scholar
  24. Keen, P., McLean, W.G.: The effect of N6, O2′-dibutyryl adenosine 3′:5′-cyclic monophosphate on noradrenaline synthesis in isolated superior cervical ganglia. Br. J. Pharmacol. 46, 529P–530P(1972)PubMedGoogle Scholar
  25. Mueller, R.A., Thoenen, H., Axelrod, J.: Inhibition of neuronally induced tyrosine hydroxylase by nicotinic receptor blockade. Eur. J. Pharmacol. 10, 51–56 (1970)PubMedCrossRefGoogle Scholar
  26. Reit, E.: Actions of angiotensin on the adrenal medulla and autonomic ganglia. Fed. Proc. 31, 1338–1343(1972)PubMedGoogle Scholar
  27. Samwer, K.-F., Schreiber, M., Molzahn, M., Oelkers, W.: Pressor effect of angiotensin II in sodium replete and deplete rats. Relationship to plasma renin, plasma sodium, and hematocrit before and after ganglionic blockade. Pflügers Arch. 346, 307–318 (1974)PubMedCrossRefGoogle Scholar
  28. Trendelenburg, U.: Some aspects of the pharmacology of autonomic ganglion cells. In: Reviews of physiology, biochemistry, and experimental pharmacology, Vol. 59. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  29. Varagic, V.M., Zugic, M.: The effect of N6–2′-O-dibutyryl-3′,5′-cyclic adenosine monophosphate, imidazole, and aminophylline on ganglionic transmission in the superior cervical ganglion of the cat. Br. J. Pharmacol. 49, 407–414 (1973)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • D. M. Aviado

There are no affiliations available

Personalised recommendations