Skip to main content

Abstract

The base analog 8-azaguanine (8-azaG; guanazolo; 5-amino-7-hydroxy-l H-v-triazolo(d)pyrimidine) holds a special place in the field of cancer chemotherapy, since it was the first purine analog to display marked earcinostatic effects against murine malignancies. This base analog, which contains a nitrogen atom in place of the carbon in position 8 of the purine ring, has not proved useful for the treatment of human cancer. However, 8-azaG has provided a valuable tool for the molecular biologist, since the molecule is readily incorporated into the ribonucleic acids and appears to exert its cytotoxic action at that level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adye, J. C., Gots,J.S.: further studies on genetically altered purine nucleotide pyrophosphorylases of salmonella. Biochim. Biophys. Acta (amst.) 118, 344–350 (1966).

    CAS  Google Scholar 

  • Agarwal,K.C., Chu,S.H., Ross,A.F., Gorske,A.F., Parks,R.E., Jr.: antitumor action of 6-selenoguanine and 6-selenoguanosine. Pharmacologist 13, 105 (1971).

    Google Scholar 

  • Agarwal, K.C., Parks, R.E., Jr.: unpublished observation (1971).

    Google Scholar 

  • Agarwal,R.P., Scholar,E.M., Agrawal,K.C., Parks, R.E., Jr.: identification and isolation on a large scale of guanylate kinase from human erythrocytes (effects of monophosphate nucleotides of purine analogs). Biochem. Pharmacol. 20, 1341–1354 (1970).

    Google Scholar 

  • Anderson,E. P., Law,L.W.: biochemistry of cancer. Ann. Rev. Biochem. 29, 577–608 (1960).

    Article  Google Scholar 

  • Ariens, E. J., Van Rossum, J. M., Simonis, A. M.: theoretical basis of molecular pharmacology; interactions of one or two compounds with one receptor system. Arzneimittel-forsch. 6, 282–293 (1956).

    CAS  Google Scholar 

  • Bennett,L.L., Jr., Skipper,H.E., Mitchell, J.H., Sugittra,K.: studies on the distribution of radioactive 8-azaguanine (guanazolo) in mice with eo 771 tumors. Cancer res. 10, 644–646 (1950).

    Google Scholar 

  • Brookman, R.W., Anderson,E.P.: Biochemistry of cancer (metabolic aspects). Ann. Rev. Biochem. 32, 463–512 (1963).

    Article  Google Scholar 

  • Brookman, R. W., Bennett, L. L., Jr., Simpson, M. S., Wilson, A. R., Thomson, J. R., Skipper, H.E.: A mechanism of resistance to 8-azaguanine. II. Studies with experimental neoplasms. Cancer Res. 19, 856–869 (1959b).

    Google Scholar 

  • Brookman,R.W., Sparks,M.C., Hutchison,D. J., Skipper,H.E.: A mechanism of resistance to 8-azaguanine. I. Microbiological studies on the metabolism of purines and 8-azapurines. Cancer Res. 19, 177–188 (1959a).

    Google Scholar 

  • Brookman,R.W., Sparks,M.C., Simpson,M.S.: A comparison of the metabolism of purines and purine analogs by susceptible and drug-resistant bacterial and neoplastic cells. Biochim. biophys. Acta (Amst.) 26, 671–672 (1957).

    Google Scholar 

  • Brown,G.B., Roll,P.M., Plentl,A.A., Cavalieri,L.P.: The utilization of adenine for nucleic acid synthesis and as a precursor of guanine. J. biol. Chem. 172, 469 (1948).

    Google Scholar 

  • Carlo, P. E., Mandel,H.G.: The effect of 4-amino-5-imidazole carboxamide on the toxicity of 8-azaguanine. Cancer Res. 14, 459–462 (1954).

    PubMed  CAS  Google Scholar 

  • Cha,S., Parks,R.E., Jr.: Succinic thiokinase. I. Purification of the enzyme from pig heart. J. biol. Chem. 239, 1961–1967 (1964).

    Google Scholar 

  • Chantrenne,H., Devreux,S.: Action de la 8-azaguanine sur la synthèse des protéines et des acides nucléiques chez Bacillus cereus. Biochim. biophys. Acta (Amst.) 39, 486–499 (1960).

    Article  Google Scholar 

  • Cohen,L.H., Parks,R.E., Jr.: Inhibition and activation of adenylosuccinic synthetase by 8-azaguanosine triphosphate. Canad. J. Biochem. 41, 1495–1501 (1963).

    Article  Google Scholar 

  • Creaser,E.H.: The assimilation of amino acids by bacteria. 22. The effect of 8-azaguanine upon enzyme formation in Staphylococcus aureus. Biochem. J. 64, 539 (1956).

    Google Scholar 

  • Darlix, J.L., Fromageot,P., Reich, E.: Analysis of transcription in vitro using purine nucleotide analogs. Biochemistry 10, 1525–1531 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Elion,G.B., Bttrgi,E., Hitchings,G.H.: Studies on condensed pyrimidine systems. IX. The synthesis of some 6-substituted purines. J. Amer. chem. Soc. 74, 411–414 (1952).

    Article  Google Scholar 

  • Elion,G.B., Hitchings,G.H.: The synthesis of 6-thioguanine. J. Amer. chem. Soc. 77, 1676 (1955).

    Google Scholar 

  • Emmelot,P.: The molecular basis of cancer chemotherapy. In: Ariens,E.J. (Ed.): Molecular pharmacology, Vol. 2. New York: Academic Press. 1965.

    Google Scholar 

  • Feigelson,P., Davidson, J. D.: The inhibition of adenosine deaminase by 8-azaguanine in vitro. J. biol. Chem. 223, 65–73 (1956).

    Google Scholar 

  • Friedkin,M.: Enzymatic synthesis of azaguanine riboside and azaguanine deoxyriboside. J. biol. Chem. 209, 295–301 (1954).

    Google Scholar 

  • Gellhorn,A.: Laboratory and clinical studies on 8-azaguanine. Cancer 6, 1030–1033 (1953).

    Article  Google Scholar 

  • Gellhorn,A., Kream, J., Hirschberg,E.: Metabolism of 8-azaguanine in rabbits. Fed. Proc. 10, 297–298 (1951).

    Google Scholar 

  • Goldin,A., Greenspan,E.M., Goldberg,B., Sohoenbach,E.B.: Studies on the mechanism of action of chemotherapeutic agents in cancer. IV. Relationship of guanine and guanylic acid to the action of guanazolo on lymphoid tumors in mice and rats. J. nat. Cancer Inst. 11, 319–338 (1950).

    Google Scholar 

  • Grünberger,D., Holy, A., Å orm,F.: Synthesis and coding properties of 8-azaguanosine containing triribonucleoside diphosphates. Biochim. biophys. Acta (Amst.) 161, 147–155 (1968).

    Google Scholar 

  • Grünberger,D., Meissner,L., Holy, A., Å orm,F.: The coding properties of polymers and trinucleoside diphosphates containing 8-azaguanosine. Coll. Czech. Chem. Commun. 32, 2625–2633 (1967).

    Google Scholar 

  • Grünberger,D., O’Neal, C., Nirenberg,M.: Stimulation of amino acid incorporation into protein by polyuridylic-8-azaguanylic acid. Biochim. biophys. Acta (Amst.) 119, 581–585 (1966).

    Google Scholar 

  • Hall,T.C., Krant,M. J., Lloyd, J.B., Patterson, W.B., Ishebara, A., Potee,K.G., Lovina, T.O., Mullen, J. M.: Treatment of localized inoperable neoplasms with intra-arterial infusions of 8-azaguanine. Cancer 15, 1156–1164 (1962).

    Article  Google Scholar 

  • Handschtjmacher,R.E., Welch, A. D.: Agents which influence nucleic acid metabolism. In: Cbargaff,E., Davidson, J.N. (Eds.): The nucleic acids, Vol. 3, pp. 453–526. New York: Academic Press 1960.

    Google Scholar 

  • Heinrich,M.R., Dewey,V.C., Parks,R.E., Jr., Kidder,G.W.: The incorporation of 8- azaguanine into the nucleic acid of Tetrahymena geleii. J. biol. Chem. 197, 199–204 (1952).

    Google Scholar 

  • HirschberGJE., Kream, J., Gellhorn, A.: Enzymatic deamination of 8-azaguanine in normal and neoplastic tissues. Cancer Res. 12, 524–528 (1952).

    Google Scholar 

  • Hirschberg,E., Murray,M.R., Peterson,E.R., Kream,J., ScJhafranek,R., Pool,J.L.: Enzymatic deamination of 8-azaguanine in normal human brain and in glioblastoma multiforme. Cancer Res. 13, 153–157 (1953).

    Google Scholar 

  • Kahan,F.M., Httrwitz, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. IV. The incorporation of pyrimidine and purine analogues into ribonucleic acid. J. biol. Chem. 237, 3778–3785 (1962).

    Google Scholar 

  • Kalle,G.P., Gots,J.S.: Alterations in purine nucleotide pyrophosphorylases and resistance to purine analogues. Biochim. biophys. Acta (Amst.) 53, 166–173 (1961).

    Article  Google Scholar 

  • Karnofsky, D. A., Clarkson, B. D.: Cellular effects of anticancer drugs. Ann. Rev. Pharmacol. 3, 357–428 (1963).

    Article  Google Scholar 

  • Karon,M., Weissman,S., Meyer,C., Henry,P.: Studies of DNA, RNA, and protein synthesis in cultured human cells exposed to 8-azaguanine. Cancer Res. 25, 185–192 (1965).

    Google Scholar 

  • Kidder, G.W., Dewey, V.C.: The biological activity of substituted purines. J. biol. Chem. 179, 181–187 (1949).

    PubMed  CAS  Google Scholar 

  • Kidder,G.W., Dewey,V.C., Parks,R.E., Jr.: Effect of lowered essential metabolites on 8-azaguanine inhibition. J. biol. Chem. 197, 193–198 (1952).

    Google Scholar 

  • Kidder,G.W., Dewey,V.C., Parks,R.E., Jr., Woodside,G.L.: Purine metabolism in Tetrahymena and its relation to malignant cells in mice. Science 109, 511–514 (1949).

    Article  Google Scholar 

  • Kidder,G.W., Dewey,V.C., Parks, R.E., Jr., Woodside,G.L.: Further evidence on the mode of action of 8-azaguanine (guanazolo) in tumor inhibition. Cancer Res. 11, 204–211 (1951).

    Google Scholar 

  • Kondo,T., Marityama,T.: The influence of 8-azaguanine on tumors and its enhancement. Gann 42, 503–506 (1955).

    Google Scholar 

  • Krishnan, P. S., Sitaramayya, A., Kumar, K. S.: Differential induction of cytoplasmic guanine deaminase isozymes under guanine stress in rat liver and brain. Biochem. biophys. Res. Commun. 40, 1002–1007 (1970).

    Google Scholar 

  • Kvam,D.C., Parks,R.E., Jr.: Inhibition of hepatic-induced enzyme formation by 8-aza- guanine. J. biol. Chem. 235, 2893–2896 (1960).

    Google Scholar 

  • Kwan,S.W., Webb,T.E.: A study of the mechanism of polyribosome breakdown induced in regenerating liver by 8-azaguanine. J. biol. Chem. 242, 5542–5548 (1967).

    Google Scholar 

  • Kwan,S.W., Webb,T.E.: Differential sensitivity of the protein-synthesizing system of rat liver to 8-azaguanine. Life Sci. 9, 975–983 (1970).

    Google Scholar 

  • Lasnitzki,I., Mathews, R.E.F., Smith, J. D.: Incorporation of 8-azaguanine into nucleic acids. Nature (Lond.) 173, 346 (1954).

    Article  Google Scholar 

  • Levin, D.H.: The polymerization of 8-azaguanosine 5’-diphosphate by polynucleotide phos- phorylase. Biochim. biophys. Acta (Amst.) 01, 75–81 (1962).

    Google Scholar 

  • Levin, D.H.: The incorporation of 8-azaguanine into soluble ribonucleic acid of Bacillus cereus. J. biol. Chem. 238, 1098–1104 (1963).

    PubMed  CAS  Google Scholar 

  • Levin, D.H.: Evidence for an active messenger ribonucleic acid containing 8-azaguanine. Biochemistry 5, 1618–1624 (1965a).

    Article  Google Scholar 

  • Levin, D. H.: Amino acid acceptor and transfer functions of sRNA containing 8-azaguanine. Biochem. biophys. Res. Commun. 19, 654–660 (1965b).

    CAS  Google Scholar 

  • Mandel,H.G.: Some aspects of the metabolism of 8-azaguanine. In: Rhoads,C.P. (Ed.): Antimetabolites and cancer, pp. 199–218. Washington, D.C.: Am. Ass. Advance. Sci. 1955.

    Google Scholar 

  • Mandel,H.G.: The effect of 8-azaguanine on utilization of methionine by Bacillus cereus. Arch. Biochem. Biophys. 76, 230–232 (1958).

    Article  Google Scholar 

  • Mandel,H.G.: The physiological disposition of some anticancer agents. Pharmacol. Rev. 11, 743–838 (1959).

    Google Scholar 

  • Mandel,H.G.: Further studies on the modification of nucleic acid synthesis of B. cereus by 8-azaguanine. J. Pharmacol, exp. Ther. 133, 141–150 (1961).

    Google Scholar 

  • Mandel,H.G., Alpen,E.L., Winters, W.D., Smith, P. K.: The urinary metabolites of 8-aza- guanine in the mouse and the monkey. J. biol. Chem. 193, 63–71 (1951).

    Google Scholar 

  • Mandel,H.G., Altman,R.L.: The depression of the incorporation of sulfur amino acids into Bacillus cereus by 8-azaguanine. J. biol. Chem. 235, 2029–2035 (1960).

    Google Scholar 

  • Mandel,H.G., Markham,R.: The effect of 8-azaguanine on the biosynthesis of ribonucleic acid in Bacillus cereus. Biochem. J. 69, 297–306 (1958).

    Google Scholar 

  • Mathews, R.E.F.: Biosynthetic incorporation of metabolite analogues. Pharmacol. Rev. 10, 359–406 (1958).

    Google Scholar 

  • Mieoh,R.P., Parks,R.E., Jr.: Adenosine triphosphate: guanosine monophosphate phosphotransferase (partial purification and substrate specificity). J. biol. Chem. 240, 351–357 (1965).

    Google Scholar 

  • Miech,R.P., York,R., Parks,R.E., Jr.: Adenosine triphosphate-guanosine 5’-phosphate phosphotransferase. II. Inhibition by 6-thioguanosine 5’-phosphate of the enzyme isolated from hog brain and sarcoma 180 ascites cells. Molec. Pharmacol. 5, 30–37 (1969).

    Google Scholar 

  • Montgomery,J.A.: On the chemotherapy of cancer. Progr. Drug Res. 8, 431–507 (1965).

    Google Scholar 

  • Mourad,N., Parks,R.E., Jr.: Erythrocytic nucleoside diphosphokinase. II. Isolation and kinetics. J. biol. Chem. 241, 271–278 (1966).

    Google Scholar 

  • O’Brien, B.R. A.: 8-Azaguanine inhibition of haemoglobin synthesis in de-embryonated chick blastoderm. Nature (Lond.) 184, 376–377 (1959).

    Article  Google Scholar 

  • Parks, R.E., Jr.: Antimetabolite studies in Tetrahymena and tumors. IN: Rhoads,C.P. (Ed.): Antimetabolites and cancer, pp. 175–197. Washington, D.C.: Am. Assoc. Advance. Sci. 1955.

    Google Scholar 

  • Parks,R.E., Jr.: Studies with 8-azaguanine and other purine antimetabolites. II Farmaco, 17, 627–646 (1962).

    Google Scholar 

  • Parks, R.E., Jr.: Cancer chemotherapy with purine antimetabolites. In: Buses:,H. (Ed.): Biochemical frontiers in medicine, pp. 245–273.: Little, Brown and Company 1963.

    Google Scholar 

  • Roblin,R.O., Jr., Lampen, J.O., English,J.P., Cole, Q.P., Vaughan,J.R.: Studies in chemotherapy. VIII. Methionine and purine antagonists and their relation to the sulfonamides. J. Am. chem. Soc. 67, 290–294 (1945).

    Article  Google Scholar 

  • Roodyn,D.B., Mandel,H.G.: The differential effect of 8-azaguanine on cell wall and protoplasmic protein synthesis in Bacillus cereus. J. biol. Chem. 235, 2036–2044 (1960).

    Google Scholar 

  • Ross,A.F., Parks,R.E., Jr.: Unpublished observation (1971).

    Google Scholar 

  • Rotjsh,A., Norris,E.R.: Deamination of 8-azaguanine by guanase. Arch. Biochem. Biophys. 29, 124–129 (1950).

    Google Scholar 

  • Roy,J.K., Kvam,D.C., Dahl,J.L., Parks,R.E., Jr.: Effect of triphosphate nucleosides of 8-azaguanine, 6-thioguanine, and 6-mercaptopurine on amino acid incorporation in vitro into microsomal protein. J. biol. Chem. 236, 1158–1162 (1961).

    Google Scholar 

  • Roy-Burman,P.: Analogues of nucleic acid components. In: Rentohnick,P. (Ed.): Recent results in cancer research, pp. 28–32. New York: Springer 1970.

    Google Scholar 

  • ScJhacter,B., Law,L.W.: Azaguanine-deaminase activity of several lymphocytic leukemias of mice. J. nat. Cancer Inst. 18, 77–81 (1957).

    Google Scholar 

  • Skipper, H.E., Bennett, L.L., Jr.: Biochemistry of cancer. Ann. Rev. Biochemistry 27,157– 166 (1958).

    Google Scholar 

  • Smith, J. D., Mathews, R.E.F.: The metabolism of 8-azapurines. Biochem. J. 66, 323–333 (1957).

    PubMed  CAS  Google Scholar 

  • Stock, J. A.: Antimetabolites. IN: Schnitzer,R. J., Hawking,P. (Eds.): Experimental chemotherapy, Vol. 4, pp. 80–196. New York: Academic Press 1966.

    Google Scholar 

  • Sugiura,K., Hitchings,G.H., Cavalieri,L.F., Stock, C.C.: The effect of 8-azaguanine on the growth of carcinoma, sarcoma, osteogenic sarcoma, lymphosarcoma and melanoma in animals. Cancer Res. 10, 178–185 (1950).

    Google Scholar 

  • Ultmann,J.E., Feigelson, P.: The effects of 8-azaguanine and 6-mercaptopurine on purine catabolism in the rat. Cancer Res. 18, 1319–1323 (1958).

    Google Scholar 

  • Ward,D.C., Fuller, W., Reich,E.: Stereochemical analysis of the specificity of pancreatic RNAase with polyformycin as substrate: differentiation of the transphosphorylation and hydrolysis reactions. Proc. nat. Acad. Sciences 62, 581–588 (1969).

    Article  Google Scholar 

  • Way,J.L., Dahl,J.L., Parks,R.E., Jr.: Polyphosphate nucleosides of purine analogues. J. biol. Chem. 234, 1241–1243 (1959).

    Google Scholar 

  • Way,J.L., Parks, R.E., Jr.: Enzymatic synthesis of 5’-phosphate nucleotides of purine analogues. J. biol. Chem. 231, 467–480 (1958).

    Google Scholar 

  • Webb, T. E.: Polyribosome breakdown in rat liver following administration of 8-azaguanine. Biochim. biophys. Acta (Amst.) 138, 307–315 (1967).

    CAS  Google Scholar 

  • Zimmerman, E.F.: Azaguanine inhibition of protein synthesis. III. Site of action in HeLa cells. Biochim. biophys. Acta (Amst.) 157, 378–391 (1968).

    CAS  Google Scholar 

  • Zimmerman,E.F., Greenberg,S.A.: Inhibition of protein synthesis by 8-azaguanine. I. Effects on polyribosomes in HeLa cells. Molec. Pharmacol. 1, 113–125 (1965).

    Google Scholar 

  • Zimmerman,E.F., Holler,B.W., Pearson,G.D.: Azaguanine inhibition of protein synthesis. II. Effects of poly (U) in Bacillus cereus. Biochim. Biophys. Acta (Amst.) 134, 402–410 (1967).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Parks, R.E., Agarwal, K.C. (1975). 8-Azaguanine. In: Sartorelli, A.C., Johns, D.G. (eds) Antineoplastic and Immunosuppressive Agents. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 38 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65806-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65806-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65808-2

  • Online ISBN: 978-3-642-65806-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics